To support the International Maritime Organization’s (IMO) 2050 greenhouse gas reduction targets, hybrid propulsion energy management systems (EMS)—which integrate multi-energy coordination and dynamic scheduling—have become a critical pathway for enabling low-carbon transitions and improving energy efficiency in the maritime sector. This paper conducts a comprehensive and structured analysis of EMS technologies applied to ship hybrid propulsion systems. It evaluates the functional roles of EMS under varying system architectures, synthesizes mainstream energy management strategies, and identifies current technological bottlenecks, thereby contributing theoretical foundations for the green transformation of the shipping industry. The study first examines representative hybrid propulsion architectures, detailing their technical characteristics to clarify the functional positioning and optimization priorities of EMS in each configuration. It then reviews prevailing energy management and control strategies, with a focus on their integration with artificial intelligence (AI) and the emergence of adaptive and data-driven approaches. Finally, the paper identifies key challenges in hybrid propulsion EMS, proposes future research directions, and offers practical recommendations to support the advancement and implementation of intelligent energy management technologies in maritime applications.
Membrane-Aerated Biofilm Reactor(MABR)는 하수처리 공정의 에너지 효율을 획기적으로 개선할 수 있는 차세대 기술로 주목받고 있다. 기존 활성슬러지 공정의 기포형 산기 시스템은 산소전달효율(OTE)이 낮고 전체 에너지 소비의 80%까지 차지하는 등 에너지 비효율성을 내포하고 있다. 반면 MABR은 기체 투과성 막(membrane)을 통해 생물막으로 산소를 직접 공급함으로써, 이론적으로 100%까지 OTE 달성이 가능하다. 본 논문은 MABR의 산소전달 메커니즘과 구조적 특징을 정리하고, OTE, 산소전달속도(OTR), 폭기 효율(AE) 등의 에너지 효율 지표를 중심으로 파일럿 및 실규모 적용 사례 11건을 분석하였다. 분석 결과, AE는 기존 활성슬러지 공정 대비 약 4-5배 향상된 수치이다. 그러나 OTE와 OTR 간의 상충관계, 공정 규모, 기질 농도 등 다양한 운영 변수에 따라 성능이 상이하게 나타났으며, 현장 적용에서는 이론적 효율을 하회하는 사례도 확인되었다. 이러한 한계를 극복하기 위한 기술적 접근으로는 간헐 공기 공급, 주기적 환기, 막 소재 개선, 막 이완 제어 등이 시도되고 있다. 동시에, 실증 연구들 간 실험 조건 및 효율 지표 산정 기준의 상이함은 결과 해석의 일관성을 저해하는 요인으로 지적된다. 따라서 본 연구는 향후 MABR 기술의 실용화를 위해 에너지 효율 평가 기준의 표준화와 대규모 현장 검증의 필요성을 강조한다.
The development of offshore wind energy plays a pivotal role in Taiwan’s transition to a lowcarbon economy. To secure the profits of substantial investments in offshore wind energy, long-term contracts are essential. However, supervening incidents could halt, damage, or destroy offshore wind projects. Force majeure clauses serve as a preventive mechanism to address these unforeseen risks. Despite their significance, contract drafters often overlook the importance of force majeure clauses. This article contends that offshore wind developers and the Taiwanese government should collaborate as partners to carefully draft force majeure clauses in offshore wind contracts, ensuring proper allocation of unforeseen risks. By examining the concept of force majeure under the CISG and Taiwanese law, this article proposes fundamental elements and a model clause for force majeure in offshore wind contracts.
식량 운송 과정에서 발생하는 온실가스는 전 세계 온실가스 배출량의 15분의 1 수준이다. 식량이 이동하는 거리를 줄여 푸드 마일리지를 절감하는 것은 도시의 지속 가능성과 회복력 을 향상시킬 수 있다. 옥상 온실은 푸드 마일리지를 감소시키 고 에너지를 절감하는 도시농업의 한 형태로 주목받고 있다. 온실과 건물 모두 실내 환경을 유지하기 위해 냉난방이 요구 된다. 건물과 온실의 통합 시스템 운영은 설비 공유로 인한 비 용 절감, 건물과 온실 간 에너지 이동으로 인한 에너지 활용이 가능하다. 건물 에너지 시뮬레이션을 이용해 다양한 통합 시 스템 에너지 성능 평가 연구가 수행되었지만, 실제 통합 시스 템에 대한 검증과 설계변수 분석은 미흡한 실정이다. 본 연구 에서는 건물 에너지 시뮬레이션을 통해 옥상온실의 설치 유 무, 옥상의 단열 성능 및 설치 면적에 따른 에너지 절감을 평가 하고자 하였다. 현장 실험은 서울특별시 성동구 성수동의 옥 상온실에서 수행되었다. 측정한 실내 온도를 통해 건물 에너 지 시뮬레이션의 모델을 검증하였고 R2 = 0.91의 결과를 보였 다. 이후 설계변수가 에너지 부하에 미치는 영향을 정량적으로 분석하였다. 통합 시스템을 운영하는 경우, 독립적으로 운 영하는 경우보다 에너지 부하량이 감소하는 경향을 보였다. 통합 시스템 설치 시 에너지 부하 절감 효과가 있으며, 효율적 인 에너지 이용을 하는 도시농업이 될 수 있다고 사료된다. 건 물 옥상의 열관류율을 0.251W/m2·K에서 1.535W/m2·K로 증가시켜 단열 성능을 약화시킨 경우, 옥상온실과 건물 최상 층의 에너지 부하는 감소하는 경향을 보였다. 통합 시스템 설 치 시 경계면의 열 교환이 증가하도록 설계하는 것이 에너지 부하 절감에 유리하다고 판단된다. 옥상온실 면적을 2.53배 증가시켰을 때 단위면적당 에너지 부하는 감소하는 경향을 보 였다. 온실 면적 증가로 인해 에너지 부하량은 증가하지만, 건 물과 온실의 열 교환이 증가하여 통합 시스템의 에너지 부하 절감이 가능하다고 판단된다. 본 연구의 결과는 통합 시스템 을 통한 에너지 부하 절감을 위한 자료로 활용될 수 있을 것으 로 판단된다. 향후 연구에서는 기후 변화에 따른 에너지, 식량 문제의 해결 대책으로 옥상온실을 활용하기 위해서 추가적인 방안이 필요할 것으로 판단된다.
Energy harvesting has become a crucial technology for sustainable energy solutions; in particular, the utilization of ambient water movement in hydrovoltaic generators has emerged as a promising approach. However, optimizing performance requires an understanding of structural factors affecting energy harvesting, particularly capillary effects. This study aimed to improve hydrovoltaic generator performance by adjusting internal fiber density, which influences water transport and ion mobility. Using cold isostatic pressing, cellulose acetate (CA) loading in a urethane mold was varied to optimize internal density. As CA loading increased, the fiber arrangement became denser, narrowing capillary pathways and reducing proton mobility. While open-circuit voltage (VOC) remained stable, short-circuit current (ISC) decreased with higher CA mass. The sample with a loading of 0.3 g exhibited the highest energy harvesting efficiency, achieving ISC = 107.2 μA, VOC = 0.15 V, and power (P) = 16.7 μW. This study provides insights into methods of improving hydrovoltaic generator efficiency through internal structural modifications.
A hybrid energy harvester that consisted of thermoelectric (TE) composite film and electrospun piezoelectric (PE) polymeric membranes was constructed. TE composites were fabricated by dispersing inorganic TE powders inside polyvinylidene fluoride elastomer using a drop-casting technique. The polyvinylidene fluoride-trifluoroethylene, which was chosen due to its excellent chemical resistance, mechanical stability, and biocompatibility, was electrospun onto an aluminum foil to fabricate the ultra-flexible PE membranes. To create a hybrid energy harvester that can simultaneously convert heat and mechanical energy resources into electricity, the TE composite films attached to the PE membrane were encapsulated with protective polydimethylsiloxane. The fabricated energy harvester converted the outputs with a maximum voltage of 4 V (PE performance) and current signals of 0.2 μA (TE performance) under periodical heat input and mechanical bending in hybrid modes. This study demonstrates the potential of the hybrid energy harvester for powering flexible and wearable electronics, offering a sustainable and reliable power source.