To mitigate carbon emissions, the government aims to transition to renewable energy sources including hydrothermal energy, specifically through wastewater heat recovery. This process involves extracting heat from wastewater or treated water. However, assessments of demand sources for local cooling and heating have predominantly focused on the proximity of nearby facilities, without conducting comprehensive demand analyses or defining explicit supply areas. This study proposes a methodology for prioritizing suitable wastewater treatment plants (WWTPs) for the implementation and expansion of renewable energy. The methodology is based on the gross floor area of potential wastewater heat demand surrounding WWTPs. Initially, potential supply and demand sources were identified based on the capacity of WWTPs and the gross floor area of buildings capable of utilizing wastewater heat. In the Republic of Korea, 330 WWTPs with a capacity of 5,000 m3/day or more have been recognized as demand sources for wastewater heat recovery. The provision of treated wastewater to structures located within a 500 m radius of the WWTPs for heat recovery is considered a feasible option. The potential wastewater heat demand and renewable energy cluster were identified among the surrounding buildings and complexes A total of 13 potential supplies were identified, provided that the gross floor exceeded 60,000 m². Finally, after prioritizing based on WWTPs with these conditions, the underground plant located in the downtown area was ranked as the highest priority. If further analysis of economic feasibility, CO2 reduction, and energy efficiency are conducted, this approach can be expanded and applied within the framework the Water-Energy Nexus. Wastewater heat can be utilized not only as a renewable energy source but also as a means to enhance wastewater reuse through the supply of treated wastewater.
The present study was conducted to investigate effects of rabbit meat extract on energy metabolism and muscle differentiation in C2C12 myotubes. Water extract of rabbit meat (10, 50, 100, and 200 μg/ml) was used to treat differentiated C2C12 cells. Reverse transcriptase polymerase chain reaction (RT-PCR) and western blot analysis were used to determine mRNA or protein levels of energy metabolism-related genes. Total adenosine triphosphate (ATP) content was also measured. Treatment with rabbit meat extract significantly increased expression levels of muscle differentiation markers (myogenin and myosin heavy chain) and mitochondrial biogenesis regulators (PGC1α, NRF1, and TFAM) in C2C12 myotubes compared to non-treated control. Additionally, rabbit meat extract activated phosphorylation of AMPK and acetyl-coA carboxylase (ACC). Rabbit meat extract significantly increased ATP contents in myotubes. These results suggest that rabbit meat extract has the potential to improve energy metabolism in skeletal muscles.
In order to overcome the limitations of linear vibration energy harvesters and those using mechanical plucking, magnetic plucking vibration energy harvesters (MVEs) have garnered significant interest. This paper presents parametric studies aimed at proposing design guidelines for MVEs and compares two magnetic force models that describe interactions between two permanent magnets. A mathematical model describing the energy harvester is employed, followed by the introduction of two magnetic force models: an analytic model and an inverse square model. Subsequently, numerical simulations are conducted to investigate dynamic characteristics of MVEs, analyzing results in terms of tip displacement, voltage output, and harvested energy. Parametric studies vary the distance between magnets, the speed of the external magnet, and the beam shape. Results indicate that reducing the distance between magnets enhances energy harvesting effectiveness. An optimal velocity for the external magnet is observed, and studies on beam shape suggest greater energy harvesting when the shape favors deflection.
This study explored the process-structure-property (PSP) relationships in Ti-6Al-4V alloys fabricated through direct energy deposition (DED) additive manufacturing. A systematic investigation was conducted to clarify how process variables—specifically, manipulating the cooling rate and energy input by adjusting the laser power and scan speed during the DED process—influenced the phase fractions, pore structures, and the resultant mechanical properties of the samples under various processing conditions. Significant links were found between the controlled process parameters and the structural and mechanical characteristics of the produced alloys. The findings of this research provide foundational knowledge that will drive the development of more effective and precise control strategies in additive manufacturing, thereby improving the performance and reliability of produced materials. This, in turn, promises to make significant contributions to both the advancement of additive manufacturing technologies and their applications in critical sectors.
In this study, we explored the potential of the Maillard reaction-based time-temperature indicators (TTI) as a tool for predicting and visualizing moisture variations during high-temperature drying. Using activation energy analysis, we found that the Maillard reaction-based TTI could not only visualize but also predict changes in moisture contents during high-temperature drying of 60-80oC. The color changes of the Maillard reaction solutions were distinct enough to be discerned with the naked eye, transitioning from colorless to black via the shift of yellow, light brown, brown, and dark brown. The dynamic characteristics for the color change in the Maillard reaction solutions and the moisture changes in the drying of thin-layer apples could be expressed with high suitability using a logistic model. This suggests that the Maillard reaction-based TTI can potentially be a practical and reliable tool for predicting the moisture changes for the high-temperature drying of thin-layer apples, offering a promising avenue for future research and applications.
본 연구는 생체에너지를 응용한 에너지테라피 프로그램이 불안에 미치는 영향에 대한 효과 검증이다. 본 연구는 에너지 테라피 프로그램을 활용하여 불안에 미치는 영향을 검 증하여, 불안을 호소하는 사람들에게 도움을 주고자 하는 것이 연구 목적이다. 연구 대상 은 6개 광역시에 거주하고 있는 에너지테라피 프로그램 참여자 303명과 비참여자(대조군) 481명을 대상으로 하였다. 측정 도구로는 불안 검사지를 사용하였다. 자료 분석을 위해서 는 통계 프로그램 패키지 SAS 6.12를 이용하여 분산분석, T-검정, 회귀 분석을 실시하였다. 분석 결과, 첫째, 불안은 남성보다 여성이 불안 지수가 높았으며, 연령은 30세 미만, 학력은 대학교 재학 중일 때, 결혼 유무는 기타, 월 가계 수입은 150만 원 미만일 때 가장 높게 나타났다. 둘째, 비참여자에 비해 에너지테라피 프로그램 참여자의 불안 지수가 낮았으며, 사전 사후 를 검증할 때, 불안이 감소 되는 것으로 나타났다. 셋째, 프로그램 참여 강도가 크고, 참여 기간이 길수록 불안 감소 효과가 큰 것으로 나타났다. 결론적으로 에너지테라피 프로그램 은 사회적 문제로 대두되고 있는 정신건강 분야인 심리적 문제에 효과가 있었다는 것을 입 증하였다.
Energy storage is one of the leading problems being faced globally, due to the population explosion in recent times. The conventional energy sources that are available are on the verge of extinction, hence researchers are keen on developing a storage system that will face the upcoming energy needs. Supercapacitors, also known as ultracapacitors or electrochemical capacitors, are advanced energy storage devices characterised by high power density and rapid charge–discharge cycles. Unlike traditional batteries, supercapacitors store energy through electrostatic separation, offering quick energy release and prolonged operational life. They hold exceptional performance in various applications, from portable electronics to electric vehicles, where their ability to deliver bursts of energy efficiently complements or replaces conventional energy storage solutions. Ongoing research focuses on enhancing energy density and overall efficiency, positioning supercapacitors as pivotal components in the evolving landscape of energy storage technologies. A novel electrode material of NiO/CuO/Co3O4/rGO was synthesized which when used as a supercapacitor, the highest value of CS is 873.14 F/g which is achieved for a current density of 1 A/g under with an energy density of 190 Wh/kg and the highest power density of 2.5 kW/kg along with 87.3% retention after 5000 GCD cycles under 1 M KOH.
Carbon nanomaterials (CNMs) have been the subject of extensive research for their potential applications in various fields, including photovoltaics and medicine. In recent years, researchers have focused their attention on CNMs as their high electrical conductivity, low cost, and large surface area are promising in replacing traditional platinum-based counter electrodes in dye-sensitized solar cells (DSSC). In addition to their electrical properties, CNMs have also displayed antibacterial activity, making them an attractive option for medical applications. The combination of CNMs with metal oxides to form composite materials represents a promising approach with significant potential in various fields, including energy and biology. Here, we introduce porous carbon nanospheres (PCNS) derived from Cocos nucifera L. and its ZnO composite (PCNS/ZnO) as an alternative material, which opens up new research insights for platinum-free counter electrodes. Bifacial DSSCs produced using PCNS-based counter electrodes achieved power conversion efficiencies (PCE) of 3.98% and 2.02% for front and rear illumination, respectively. However, with PCNS/ZnO composite-based counter electrodes, the efficiency of the device increased significantly, producing approximately 5.18% and 4.26% for front and rear illumination, respectively. Moreover, these CNMs have shown potential as antibacterial agents. Compared to PCNS, PCNS/ZnO composites exhibited slightly superior antibacterial activity against tested bacterial strains, including gram-positive Bacillus cereus (B. cereus) and Staphylococcus aureus (S. aureus), and gram-negative Vibrio harveyi (V. harveyi) and Escherichia coli (E. coli) with MIC values of 125, 250, 125, and 62.5 μg/ml, respectively. It is plausible that the outcomes observed were influenced by the synergistic effects of the composite material.
In this study, four different samples of Se60Ge40-xBix chalcogenides glasses were synthesized by heating the melt for 18 h in vacuum Pyrex ampoules (under a 10-4 Torre vacuum), each with a different concentration (x = 0, 10, 15, and 20) of high purity starting materials. The results of direct current (DC) electrical conductivity measurements against a 1,000/T plot for all chalcogenide samples revealed two linear areas at medium and high temperatures, each with a different slope and with different activation energies (E1 and E2). In other words, these samples contain two electrical conduction mechanisms: a localized conduction at middle temperatures and extended conduction at high temperatures. The results showed the local and extended state parameters changed due to the effective partial substitution of germanium by bismuth. The density of extended states N(Eext) and localized states N(Eloc) as a function of bismuth concentration was used to gauge this effect. While the density of the localized states decreased from 1.6 × 1014 to 4.2 × 1012 (ev-1 cm-3) as the bismuth concentration increased from 0 to 15, the density of the extended states generally increased from 3.552 × 1021 to 5.86 × 1021 (ev-1 cm-3), indicating a reduction in the mullet’s randomness. This makes these alloys more widely useful in electronic applications due to the decrease in the cost of manufacturing.
Hydraulic turbines can convert tidal current energy into electric energy, and the addition of a deflector cover to the turbine can improve the efficiency of the turbine's energy harvesting. The angle of the inlet section and the angle of the outlet section of the deflector will further affect the final energy-acquisition efficiency.A threedimensional numerical model for turbine flow field analysis is established, and the RNG k-ε turbulence model is selected by CFD method, and the best angles of inlet section and outlet section are analysed by the method of sliding mesh to obtain the best angle of inlet section and outlet section separately, and then three groups of angles are selected near the best angle of inlet section and outlet section to make orthogonal comparisons. The energy acquisition efficiency of the turbine is calculated at different angles of the inlet and outlet sections of the deflector, and the turbine streamline distribution, velocity and pressure maps are analysed with and without the deflector.The study shows that the deflector can play the role of convergence of the downstream flow, which can improve the efficiency of the turbine energy acquisition, and the maximum energy acquisition efficiency is at the inlet angle of 29° and the outlet angle of 40 °, and the maximum energy acquisition efficiency can be improved by about 32 percent.
This paper aims to study the modeling and controller of an electrically driven tractor optimized for energy efficiency under off-road conditions and when subjected to loads such as plowing. The dynamic model design is aimed at a 30kW electric tractor. The vehicle model consists of a 30kW motor, transmission, wheels, and a controller, designed using the commercial software Matlab/Simulink. In order to optimize energy efficiency under load conditions, this paper designs and implements a PID controller focusing on the vehicle's speed and wheel slip. The newly proposed electric tractor modeling and PID controller aim to demonstrate improved energy efficiency through simulation.
In the development of eco-friendly vehicles such as electric vehicles, weight reduction has become a very important design target. Seat weight reduction is very important in vehicle weight reduction. In this study, the energy absorption characteristics of Almag material, an alloy of aluminum and magnesium, and mild steel SAFH440, SAFH590, SAFC780, and SAFH980 were analyzed to obtain a true stress versus true strain curve that was correlated with the test. By performing the seat frame structure analysis using the obtained analysis material property, it was possible to compare the deformation between lightweight material, Almag and mild steel materials. In addition, it was confirmed that the weight reduction effect was 25.8% when applying Almag, an equivalent lightweight material that gives the same maximum deformation as SAFH980, a high-strength mild steel.
본 논문은 농업인의 신재생에너지에 대한 인식을 살펴보고, 신재생에너지 수용성 및 보급 활성화를 위한 결정요인을 파악하고자 하였다. 이를 위해 농업인 397명으로부터 얻은 설문조사 결과를 기초로 프로빗 분석과 다항 로지스틱 분석을 실시하였다. 분석 결과 농업부문에서 발생하는 온실가스를 감축해야 한다고 인식하는 농업인들은 신재생에너지를 도입할 가능성이 높았다. 이는 농업인들이 신재생에너지를 온실가스 감축의 대안으로 인식하고 있음을 의미하며, 따라서 기후변화의 주된 원인인 온실가스를 줄이기 위해 농업인들에게 신재생에너지의 중요성을 교육하고 홍보하는 것이 필요함을 시사한다. 또한 분석 결과에 따라 신재생에너지를 인지하고 있는 농업인들을 중심으로 농업인이 주도하는 신재생에너지 사업모델을 발굴하고, 농촌지역 주민-신재생에너지 사업자-공공기관이 함께 참여하는 협의기구를 조성해야 한다. 그리고 경영비 절감을 위해 신재생에 너지의 중요성을 인식하는 농업인들에게는 경제적 인센티브와 전기 이동 선로의 연결 개선 및 지원을 확대해야 한다. 마지막으로 신재생에너지의 유익·가치성을 인식하는 농업인들에게는 신재생에너지 기술의 지원 확대가 이루어져야 한다.
최근 지구온난화로 인해 발생하는 폭우 및 강설과 같은 비정상적인 기상 패턴으로 인해 도로 표면 결빙(블랙 아이스)으로 인 한 사고와 인명 피해가 증가하고 있으며, 이는 주요 문제로 대두되고 있습니다. 이러한 문제를 완화하기 위해 본 연구에서는 열저장 능력을 갖춘 상변화 물질(PCM)을 시멘트 복합재료에 포함시켰습니다. PCM은 상변화 과정에서 열에너지를 흡수, 저장 및 방출할 수 있어 온도 변동으로 인한 결빙을 최소화할 수 있습니다. PCM은 먼저 미세 캡슐화된 후 시멘트 복합재료에 강화되어 기계적 및 열적 성능 검증 연구가 수행되었습니다. 또한, 열전달 효율과 기계적 특성을 향상시키기 위해 다중벽 탄소나노튜브(CNT)와 실리카 퓸이 추 가되었습니다. 미세 캡슐화된 PCM의 열 성능은 열 거동을 측정하기 위한 재료 실험을 통해 검증되었습니다. 이후, 제조된 시멘트 복 합재의 기계적 및 열적 성능 테스트가 그 효과를 평가하기 위해 수행되었습니다. 이러한 테스트 동안 일정 온도와 습도 챔버를 사용한 열 주기 테스트가 열 성능을 검증하기 위해 수행되었습니다. 기계적 성능 실험에서는 CNT와 실리카 퓸의 포함이 미세 캡슐화된 PCM 의 포함으로 인한 강도 저하를 완화하는 것을 확인하였습니다. 더욱이, 열 주기 테스트를 통해 고효율 열저장 시멘트 복합재가 결빙 조건에서도 영하의 온도를 유지할 수 있음을 보여주었으며, 이는 효율적인 열저장 성능을 입증하였습니다.
This study focuses on analyzing the energy-saving effects of the recirculation aquaculture system using seawater source heat pumps and solar power generation. Based on the thermal load analysis conducted using the transient system simulation tool, the annual energy consumption of the recirculation aquaculture system was analyzed and the energy-saving effects of utilizing the photovoltaic system was evaluated. When analyzing the heat load, the sea areas where the fish farms are located, the type of breeding tank, and the circulation rate of breeding water were taken into consideration. In addition, a method for determining the appropriate capacity for each operation time was examined when applying the energy storage system instead of the existing diesel generator as an emergency power, which is required to maintain the water temperature of breeding water during power outage. The results suggest that, among the four seas considered, Jeju should be estimated to achieve the highest energy-saving performance using the solar power generation, with approximately 45% energy savings.
In this investigation, we synthesized a novel quaternary nanocomposite, denoted as RGO-Ba(OH)2/CeO2/TiO2, through a straightforward and cost-effective solid-state synthesis approach. The as-prepared composites underwent a series of comprehensive characterizations, including XRD, FTIR, TGA-DTA, XPS, SEM, EDAX, and TEM analyses, affirming the successful synthesis of a quaternary nanocomposite with well-interconnected nanoparticles, nanorods, and sheet-like structures. Further, our electrochemical performance evaluations demonstrated that the electrochemical capacitance of the RGO-Ba(OH)2/CeO2/ TiO2 nanocomposite achieved an impressive value of 445 F g− 1 at a current density of 1.0 A g− 1, particularly when the mass ratio of CeO2 and TiO2 was maintained at 90:10. Furthermore, the specific capacitance retained a remarkable 65% even after 2000 cycles at a current density of 6 A g− 1 in a 3 mol KOH electrolyte. Comparatively, this outstanding electrochemical performance of the RGO-Ba(OH)2/CeO2/TiO2 (90:10) nanocomposite can be attributed to several factors. These include the favorable electrical conductivity and large specific surface area provided by graphene, TiO2, and Ba(OH)2, the enhanced energy density and extended cycle life resulting from the presence of CeO2, and the synergistic contributions among all four components. Therefore, the RGO-Ba(OH)2/CeO2/TiO2 nanocomposite emerges as a highly promising electrode material for supercapacitors.