This study was conducted to investigate changes in immunoglobulin G (IgG) concentration, nutrient content, and microbial communities of fresh and heat-treated Holstein colostrum collected from a colostrum bank operated by a local agricultural technology center in Gyeongsangbuk-do, South Korea. Of the 16 colostrum samples, 8 were heated at 60℃ for 30 min under a pressure of 0.9–1 bar. The colostrum samples were stored at −70℃ until use, at which time they were thawed at 50–55℃ in a water bath to analyze IgG levels, chemical composition, and microbiome, which was identified by 16S rRNA gene sequencing using the Illumina MiSeq-PE250 platform. The IgG concentrations were similar in fresh and heat-treated colostrum. The fat, protein, and lactose contents also did not differ in these samples. However, somatic cell count (SCC) was lower in heat-treated colostrum than those in fresh colostrum (p<0.05). At the phylum level for the microbiome of fresh colostrum, Proteobacteria (44.16%) was the most abundant taxa, followed by Bacteroidota (33.26%), Firmicutes (10.04%), Actinobacteriota (7.14%), and a marginal difference in the order of abundance was observed in heat-treated colostrum. At the genus level, bacteria belonging to Sphingomonas, Delftia, Ochrobactrum, Simplicispira, and Lactobacillus were more abundant (p<0.05) in the heat-treated colostrum, while the abundance of Acinetobacter in the fresh colostrum was four times more (p<0.05) than that in the heat-treated colostrum. Our results demonstrated that heating does not affect IgG level and colostrum composition but reduces SCC (p<0.05), suggesting that heat-treated colostrum can potentially be put to further use (e.g., feeding Hanwoo calves) without compromising its quality. Differences in the microbiome between the fresh and heat-treated colostrum were limited. Further studies are required to extensively investigate the quality and safety of colostrum collected from dairy farms to ensure better utilization and processing at a local agricultural technology center.
Al-Mg-Si alloys are light weight and have excellent corrosion resistance, and are attracting attention as a liner material for high-pressure hydrogen containers in hydrogen fuel cell vehicles. Because it has excellent plastic hardening properties, it is also applied to car body panel materials, but it is moderate in strength, so research to improve the strength by adding Si-rich or Cu is in progress. So far, the authors have conducted research on the intergranular fracture of alloys with excessive Si addition from the macroscopic mechanical point of view, such as specimen shape. To evaluate their impact tensile properties, the split-Hopkinson bar impact test was performed using thin plate specimens of coarse and fine grain alloys of Al-Mg-X (X = Cr,Si) alloy. The effect of the shape of the specimen on the characteristics was studied through finite element method (FEM) analysis. As a result, it was found that the intergranular fracture of the alloy with excessive Si depended on the specimen width (W)/grain size (d), which can be expressed by the specimen size and grain size. As W/d decreases, the intergranular fracture transforms into a transgranular fracture. As the strain rate increases, the fracture elongation decreases, and the fracture surface of the intergranular fracture becomes more brittle. It was confirmed that intergranular fracture occurred in the high strain rate region even in materials with small grain sizes.
CO2 photocatalytic reduction is a carbon–neutral renewable energy technology. However, this technology is restricted by the low utilization of photocatalytic electrons. Therefore, to improve the separation efficiency of photogenerated carriers and enhance the performance of CO2 photocatalytic reduction. In this paper, g-C3N4/Pd composite with Schottky junction was synthesized by using g-C3N4, a two-dimensional material with unique interfacial effect, as the substrate material in combination with the co-catalyst Pd. The composite of Pd and g-C3N4 was tested to have a strong localized surface plasmon resonance effect (LSPR), which decreased the reaction barriers and improved the electron utilization. The combination of reduced graphene oxide (rGO) created a π–π conjugation effect at the g-C3N4 interface, which shortened the electron migration path and further improved the thermal electron transfer and utilization efficiency. The results show that the g-C3N4/ rGO/Pd (CRP) exhibits the best performance for photocatalytic reduction of CO2, with the yields of 13.57 μmol g− 1 and 2.73 μmol g− 1 for CO and CH4, respectively. Using the in situ infrared test to elucidate the intermediates and the mechanism of g-C3N4/rGO/Pd (CRP) photocatalytic CO2 reduction. This paper provides a new insight into the interface design of photocatalytic materials and the application of co-catalysts.
Sulfamonomethoxine (SMM) is widely used to inhibit Gram-positive and Gram-negative bacteria, and improper use of SMM is detrimental to human health and ecological stability. Therefore, a sensitive determination method is of great importance for monitoring SMM residues in water, meat, milk, eggs, etc. Herein, a Pt-functionalized S-doped graphitic carbon nitride (Pt/Sg- C3N4) was constructed for the electrochemical determination of SMM. The as-developed Pt3/ S3-g-C3N4 sensor showed a significant SMM determination performance. The electrochemical oxidation of SMM on Pt3/ S3-g-C3N4/GCE involves two electron transference and was limited by a diffusion process. The as-developed Pt3/ S3-g-C3N4/GCE sensor has good linearity in a wide range of 0.1–120 μmol/L and a remarkably low limit of detection (LOD) of 0.026 μmol/L for SMM determination. In addition, the sensor has high selectivity and anti-interference properties for SMM detection. Furthermore, this Pt3/ S3-g- C3N4/GCE sensor has good reproducibility and stability. Moreover, the recoveries were in the range of 89.6–112.2% for the detection of the SMM in a real sample of egg. The proposed Pt3/ S3-g-C3N4/GCE sensor shows great potential for practical applications in detecting trace amounts of antibiotics.
최소 사후 경과 시간(PMImin) 측정에 필수적으로 이용되는 것 중 하나가 시식성 곤충의 발육 속도를 정확히 측정한 데이터이다. 법의곤충학(Medicolegal entomology)을 이용한 최소 사후 경과 시간 측정 방법은 과거에 비해 빠르게 발전하고 있지만, 보다 정확한 데이터를 얻기 위해서는 추가적인 기초 데이터 확보가 필요하다. 이에 본 연구에서는 가장 대표적인 시식성 곤충 중 하나인 연두금파리(Lucilia illustris)를 대상으로 온도에 따른 성장 속도를 측정하였다. 흔히 blow fly 또는 green bottle fly라고도 불리는 연두금파리는 사체에 가장 먼저 나타나는 시식성 파리 중 하나이기 때문에, 해당 종의 유충 성장 속도를 측정하면 최소 사후 경과 시간을 비교적 정확하게 추정하는 것이 가능하다. 실험에 사용된 연두금파리는 5~9월경 대전 유성구 일대에서 성충을 채집하여 종 동정, 사육 및 증식, 예비 실험을 거친 후 본 실험을 진행하였다. 본 실험은 성충 사육 케이지 내에서 교미 및 산란 유도 후 산란된 알을 돼지 생간에 접종하여 유충 사육 전용 챔버에 넣고, 12시간 간격으로 6개체 샘플링하고 추가로 각 령기 변화 시점에 샘플링을 진행하였다. 샘플링된 유충은 길이 측정 및 이미지 촬영을 진행하였다. 16℃, 19°C, 22°C, 25°C, 28°C, 31°C, 34°C 7개 온도 조건에서 연두금파리의 성장 속도 측정 실험을 3회 반복하였으며, 산란으로 부터 부화 및 우화까지 시간 등을 포함한 전체 성장 시간 데이터와 유충 몸길이 데이터, 이미지 자료, 샘플링한 유충 액침표본 등을 확보하였다. 16℃, 19°C, 22°C, 25°C, 28°C, 31°C에서 연두금파리의 전체 성장 시간은 각각 792.7±70.2, 441.0±53.3, 366.7±15.1, 288.0±7.2, 255.7±4.0, 260.3±13.2로 측정되었으며, 34°C에서는 3령 이후 성장 하지 못하고 폐사함을 확인하였다. 본 연구의 결과는 연두금파리의 성장 과정 데이터와 최소 사후 경과 시간 추정을 위한 지표로서 활용 가능한 데이터를 제공한다.
This study investigates the impact of Bursaphelenchus xylophilus infection on the gut bacterial communities of the pine sawyer beetle, Monochamus alternatus, with a distinction between male and female individuals. Utilizing specific primers, we determined the infection status and analyzed the bacterial composition across different taxonomic levels. Regardless of infection status or sex, Proteobacteria and Firmicutes were found to dominate the phylum level, with significant contributions from Actinobacteria and Bacteroidetes. At the class level, Bacilli, Gammaproteobacteria, Alphaproteobacteria, and Actinobacteria emerged as prevalent groups. Meanwhile, the genus level was characterized by a high abundance of Lactobacillus, Rickettsia, Bacillus, and Rahnella. Our analysis of alpha diversity metrics, including Observed Species, Shannon Index, Inverse Simpson Index, and Phylogenetic Diversity, revealed no significant differences attributable to B. xylophilus infection; however, notable variations were observed between sexes. Principal Coordinates Analysis and Non-metric Multidimensional Scaling further underscored that the differences in gut bacterial communities were more pronounced between male and female beetles than between infected and uninfected individuals. These findings highlight the influence of host sex over infection status in shaping the gut microbiome of Monochamus alternatus, providing new insights into the complex interactions between host biology, gut microbiota, and pathogen infection.
The genus Caenoscelis C. G. Thomson (Coleoptera: Cryptophagidae: Cryptophaginae) comprises approximately 30 species in the world, primarily distributed in the Holarctic region. Although 15 Caenoscelis species occur in the Palearctic region, only a single species, Caenoscelis sibirica Reitter, has been documented in Korea. In this study, Caenoscelis koreanus sp. nov. is described, and Caenoscelis ferruginea (C. R. Sahlberg) is reported for the first time in Korea. The new species can be distinguished from other Caenoscelis species by their subquadrate antennomere 10, fully developed hind wings, and male genitalia with subacute parameres and indistinctly separated lateral lobes. Illustrations of habitus, diagnostic characters, and a distribution map of Korean Caenoscelis species are provided.
The effective management of insect pests requires decisions based on monitoring information. In this study, we aimed to monitor insect species diversity and monthly occurrence patterns on the golf course using light traps. Sampling was conducted at Anyang Country Club, Korea, from May to October 2023. A total of 5,149 individuals were collected, with Lepidoptera and Coleoptera being the most abundant orders. Among them, there were six species (Agrotis ipsilon, Blitopertha orientalis, Heptophylla picea, Maladera orientalis, Parapediasia teterrella, and Spodoptera depravata) of insect pests that caused serious damage to the turfgrass. The results of this study could be used as data to establish efficient management strategies for turfgrass insect pests.
Vespa binghami (Hymenoptera: Vespidae) is one of the 10 species in the genus Vespa distributed in South Korea and is the only nocturnal wasp. In this study, we sequenced complete mitochondrial genome (mitogenome) of the species using the Sanger method and using Vespa-specific 30 primer sets. The length of V. binghami was 15,957 bp and the total A/T content was 80.6%. The A+T-rich region of V. binghami was 152 bp, and other Vespa species ranged from 39 bp (V. velutina) to 2,230 bp (V. v. auraria). Compared to the majority of insects, the gene arrangement of V. binghami had differences as followings: trnY-trnI-trnM-trnQ, trnN-trnE-trnS1-trnF, and trnS2-trnL1. However, all species in the genus Vespa registered in GenBank to date were composed of the same arrangement. Phylogenetic analysis using 13 PCGs and 2 rRNA genes showed the sister relationship between V. binghami and V. orientalis with the higher nodal supports.
본 연구는 대학 창의융합수업에서 Appreciative Inquiry 교수학습방법을 적용한 후 창의융합역량 학습 성과 효과를 분석하는 것을 목적으로 하였다. 이를 위하여 창의융합교육을 위한 창의융합역량 학습성과 평가도구를 개발하고 이를 타당화하였다. 이후, 경기도 소재 G 대학교 경영대학원에서 교육경영 교과목을 수강하는 대학원생 12명을 대상으로 교수학습 방법을 적용한 창의융합교육을 실시하고 창의융합역량 학 습성과 효과를 분석하였다. 연구결과, 팀기반 Appreciative Inquiry 교수학습 방법이 학습자의 창의융합역 량 학습성과 증진에 유의미한 역할을 하였다. 학습자-학습자간, 교수자-학습자간 평가로 실시한 학습성 과 평가에서 Appreciative Inquiry의 4D 활동이 혁신적 사고, 다양한 아이디어, 경험의 결합, 협력적 태도 역량 증진에 효과적인 것으로 분석하였다. 이를 통해 창의융합교육에서 학습자의 적극적인 참여와 협업을 바탕으로 긍정적인 분위기의 아이디어 발산과 공유의 팀기반 교수학습 방법이 창의융합역량 학습성과에 효과가 있다 결론을 도출하였다.
A semi-natural composite of κ-carrageenan and bentonite, two natural biopolymers, was synthesized through free radical polymerization. This synthesis aimed to obtain a biodegradable, biocompatible, and swellable composite that is environmentally friendly. The components used in this synthesis are readily available, making it economically feasible and promising for potential biomedical applications. The composite is pH-responsive and intended for oral delivery of metformin hydrochloride and aminophylline, which have low bioavailability and undesirable side effects, respectively. The organic composite exhibits the advantage of reducing drug release in the acidic gastric medium. This composite is a stimuli-responsive polymeric material that has garnered significant attention in recent years for its application in oral drug delivery systems. These materials enable site-specific and controlled drug release while minimizing toxicity. The carrageenan-g-poly(acrylamide-co-acrylic acid)/bentonite composite was characterized using Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), and field emission scanning electron microscopy (FE-SEM), which confirmed the successful synthesis of the composite. The swelling behaviour and point of zero charge of the composite were studied at different pH values, which showed a strong influence on the swelling properties of the composite. The drug loading capacity of the composite was measured at pH 5.3, and it was 70.60 mg/g for metformin and 95.66 mg/g for aminophylline at pH(3). The in vitro release profile of both drugs from the composite was also affected by the ionic strength, and it exhibited a lower release rate with higher salt concentration. The maximum release percentage of the drugs from carrageenan-g-poly(acrylic acid-acrylamide)/bentonite in simulated gastric, intestinal, and colon fluids was achieved within 40 h. The maximum release was 80% for metformin in simulated intestinal fluid (SIF) and 75% for aminophylline after 40 h.
Fe3O4/g-C3N4/TiO2 catalyst has been fabricated using a simple ultrasonic method with high photocatalytic activity. The morphology, structure and optical properties of Fe3O4/ g-C3N4/TiO2 were systematically investigated by a variety of characterization techniques. The optimum degradation conditions were investigated by degrading tetracycline (TC) under visible light irradiation. The results showed that the degradation efficiency was the highest when the initial TC concentration was 5.0 mg/L, the pH value was 11 and the catalyst dosage was 1.0 g/L. After 100 min of visible light irradiation, the degradation efficiency of TC achieved at 73.61%, which was 1.64 and 1.19 times that of g-C3N4 and Fe3O4/ g-C3N4, respectively. Moreover, Fe3O4/ g-C3N4/TiO2 had good stability and recyclability. The results of capture experiments showed that ‧O2 − and ‧OH were the main active species during the photocatalytic process, and a possible photocatalytic reaction mechanism of Fe3O4/ g-C3N4/TiO2 catalyst was proposed. This study provides a new way to improve the photocatalytic performance of g-C3N4, which has great potential in degrading pollutants such as antibiotics in wastewater.