Mangroves are distributed in intertidal zones of coastal environments or estuarine margins, playing a critical role in the global carbon cycle. However, understanding of the carbon cycle role of mangrove associates in the Republic of Korea is still limited. This research measured soil respiration and leaf gas exchange in three habitats of Hibiscus hamabo (Gimnyeong, Seongsan, and Wimi) and analyzed the impacts on sites and months. Soil respiration was measured once a month from June to October 2022 and leaf gas exchange was measured monthly from June to September 2022. Soil respiration in August (5.7±0.8 μmol CO2 m-2 s-1) was significantly higher than that in other months (p<0.001) and soil respiration increased as air temperature increased (p<0.001). In Seongsan, net photosynthesis in July (9.0±0.9 μmol m-2 s-1) was significantly higher than that in other months (p<0.001). Net photosynthesis increased as stomatal conductance and transpiration rate increased during the entire period (p<0.001). Furthermore, a weak positive linear relationship was observed between soil respiration and net photosynthesis (r2=0.12; p<0.01). The results indicated that soil respiration was influenced not only by air temperature and season but also by net photosynthesis. This study is expected to provide basic information on the carbon dynamics of mangrove associates.
During the initial cooling period of spent nuclear fuel, Cs-137 and Sr-90 constitute a large portion of the total decay heat. Therefore, separating cesium and strontium from spent nuclear fuel can significantly decrease decay heat and facilitate disposition. This study presents analytical technique based on the gas pressurized extraction chromatography (GPEC) system with cation exchange resin for the separation of Sr, Cs, and Ba. GPEC is a micro-scaled column chromatography system that allows for faster separation and reduction volume of elution solvent compared to conventional column chromatography by utilizing pressurized nitrogen gas. Here, we demonstrate the comparative study of the conventional column chromatography and the GPEC method. Cation exchange resin AG 50W-X12 (200~400 mesh size) was used. The sample was prepared at a 0.8 M hydrochloric acid solution and gradient elution was applied. In this case, we used the natural isotopes 88Sr, 133Cs, and 138Ba instead of radioactive isotopes for the preliminary test. Usually, cesium is difficult to measure with ICP-OES, because its wavelengths (455.531 nm and 459.320 nm) are less sensitive. So, we used ICP-MS to determine the identification and the recovery of eluate. In this study, optimized experimental conditions and analytical result including reproducibility of the recovery, total analysis time and volume of eluents will be discussed by comparing GPEC and conventional column chromatography.
This study was performed to evaluate the separation of Sr, Cs, Ba, La, Ce, and Nd using gas pressurized extraction chromatography (GPEC) with anion exchange resin for the quantitation of Neodymium. GPEC is a micro-scaled column chromatography system that provides a constant flow rate by utilizing nitrogen gas. It is overcome the disadvantages of conventional column chromatography by reducing the volume of elution solvent and shortening the analysis time. Here, we compared the conventional column chromatography and the GPEC method. The whole analysis time was decreased by nine times and radioactive wastes were reduced by five times using the GPEC system. Anion exchange resin 1-X4 (200~400 mesh size) was used. The sample was prepared at a 0.8 M nitric acid in methanol solution. The elution solvent was used at a 0.01 M nitric acid in methanol solution. Finally the eluate was analyzed by ICP-MS to determine the identification and recovery. In this case, we applied the natural isotopes of LREEs (139La, 140Ce, and 144Nd) and high activity nuclides (88Sr, 133Cs, and 138Ba) instead of radioactive isotopes for the preliminary test; as a result, unnecessary radioactive waste was not produced. The recoveries were 93.9%, 105.9%, 91.9%, 47.6%, 35.9%, and 79.9% of Sr, Cs, Ba, La, Ce, and Nd, respectively. The reproducibility of recoveries by GPEC were in the range 2.8%–10.9%.
The O2 and CO2 concentrations in controlled atmosphere (CA) rooms are determined by the respiration of produce like apples and the airtightness of the CA room, with gas in the CA room controlled by O2 and CO2 removal as well as respiration (CO2 increase and O2 decrease). The purpose of this study was to evaluate the validity of the gas exchange model for O2 removal, CO2 removal, the rate of O2 decrease and CO2 increase by respiration of apples, and airtightness of the CA room. It took 17.5 hours to reduce O2 concentration from 20.9% to 2.0% after loading 4.3 tons of Fuji apples into the CA room, which was 4.2 hours longer than the 13.3 hours of the model formula. After the CO2 concentration rose to 0.5% due to respiration, it took 4.7 hours to lower the CO2 concentration to 0.2%, which was 0.6 hours longer than that of the model equation. The rate of CO2 increase by respiration was 0.021%/ h, which was similar to the model equation (0.017%/h). Also after 4.7 hours, the O2 concentration decreased by 0.1% which was also in line with the model equation (0.13%/h).