Gas sensors are crucial devices in various fields including industrial safety, environmental monitoring, gas infrastructure and medical diagnosis. These sensors measure specific gases in different environments, guaranteeing operational safety and efficiency through precise on-site measurements. Designed for high sensitivity, stability and reliability, gas sensors must also be cost-effective, quickly responsive and compact. To address these diverse requirements, we have developed two types of gas sensors based on the volumetric and the manometric method. These sensors operate by measuring the gas volume and the pressure changes, respectively, of the emitted gas. These sensors are capable of determining gas transport parameters such as gas uptake, solubility and diffusion coefficient for gas-charged polymers in high pressure environment. The sensors provide rapid responses within one second and can measure gas concentrations ranging from 0.01 wt ppm to 1500 wt ppm with adjustable sensitivity and measurement ranges. Performance evaluations demonstrate the sensors' reliability, adaptability to varying measurement ranges and stability under temperature and pressure fluctuations. As a result, this sensor system facilitates the real time detection and analysis of gas transport properties in pure gases including H₂, He, N₂, O₂ and Ar, making it suitable for pure gas sensing.
In this study, the performances of H2S, NH3, and HCl sensors for real-time monitoring in small emission facilities (4, 5 grades in Korea) were evaluated at high concentration conditions of those gases. And the proper approach for the collection of reliable measurement data by sensors was suggested through finding out the effect on sensor performances according to changes in temperature and humidity (relative humidity, RH) settings. In addition, an assessment on sensor data correction considering the effects produced by environmental settings was conducted. The effects were tested in four different conditions of temperature and humidity. The sensor performances (reproducibility, precision, lower detection limit (LDL), and linearity) were good for all three sensors. The intercept (ADC0) values for all three sensors were good for the changes of temperature and humidity conditions. The variation in the slope value of the NH3 sensor showed the highest value, and this was followed by the HCl, H2S sensors. The results of this study can be helpful for data collection by enabling the more reliable and precise measurements of concentrations measured by sensors.
As a new nanostructure, a graphene is a compound of carbon atoms with a two-dimensional structure that has attracted the attention of many nanoscale researchers due to its novel physical and chemical properties. The presence of all graphene atoms in the surface and its unique electrical properties, as well as the ability to functionalize and combine with another nanomaterial, has introduced graphene as a new and suitable candidate material for gas sensing. Over the years, many researchers have turned their attention to carbon nanomaterial. The unique optical, mechanical, and electronic properties of these nanostructures have led them to use these nanomaterials to develop tiny devices, such as low-consumption sensors. Carbon nanomaterial poses a threat to another nanomaterial in terms of their use in gas sensors. This review article discusses the use of carbon nanoparticles and graphene in gas sensors, examines the nodes in the commercialization pathway of these compounds, and presents the latest achievements. Finally, the perspectives of the challenges and opportunities in the field of sensors based on carbon nanomaterial and graphene are examined.
Four types of metal oxide semiconductor gas sensor arrays were used to observe the aroma and spoilage odor emitted during the ripening process of plum & banana fruits. All gas sensors showed a high correlation (R=0.82~0.90) with the olfactory. The TGS 2603 sensor showed a high correlation of 0.90 between the odor generated and sensory perception of smell in the process of ripening and decaying fruits. In addition, it showed a very high correlation of 0.91 with the decay rate of the plum sample, and the significance probability through one-way ANOVA was also less than 0.05, which confirmed it as an optimal gas sensor (TGS 2603). Principal component analysis was performed using all the data. The cumulative variability was 99.54%, which could be explained only by two principal components, and the first principal component was 95.11%, which was related to the freshness of the fruit. It was analyzed as fresh fruit in the negative(-) direction and decayed fruit in the positive(+) direction.
The changes in the aroma and spoilage odor emitted from eleven ‘Hongro’ apples during ten weeks’ storage were investigated using six types of metal oxide semiconductor gas sensor arrays. The gas sensors used in the evaluation were sensitive to apple-emitted aroma or spoilage odor, and a high reproducibility of 5% relative standard deviation or less was confirmed. Significantly, the change in apple-emitted aroma or spoilage odor was easily distinguished by the optimal gas sensor and a significant correlation (r=0.992) between decay rate and sensitivity change was observed. The results of a principal component analysis of the signal patterns obtained by data standardization using the optimal gas sensor showed a clear classification between decayed sampler groups and undecayed sampler groups.
This study was designed to assess the odor characteristics of paprika with metal oxide gas sensors. Non-decayed paprika and decayed paprika were assessed by sensor array system comprising 10 kinds of sensors. Three representative sensors were selected from among the 10. Selection was based on a correlation analysis between sensors from the results of the sensor array assessment on non-decayed paprika. It was found that the odor variation characteristics of paprika can be assessed by metal oxide gas sensors and that the odor variation characteristics of paprika are different depending on the type of gas sensors. The odor characteristics of paprika were different according to the color, the presence or absence of decay, the location of decay, the type of sensor, and the passage of time. Regardless of decay, the sensor response value of orange paprika was the highest, with the 2611 sensor yielding the highest response value. The SB-AQ1 sensor could not identify the difference in odor characteristics depending on the location of decay, while detection was possible by both SB-41 and 2611 sensors.
The gas sensor sensitivity value of three methods (simple application method, vaporization method, and chamber method) were compared in order to establish a method for the measurement of liquid odor substances. In order to select the representative sensors from among the 16 sensors constituting the gas sensor array, cluster analysis, regression analysis, and correlation analysis were performed. Sensors with excellent correlation in terms of reactivity were selected as representative sensors of each measurement method. As a result, it was shown that the reactivity and the correlation increased in the order of simple application method < vaporization method < chamber method. Through a variance analysis using the sensitivity values of selected representative sensors, it was shown that the simple application method had statistical significance at the level of 99.9% (p<0.001) in three of the representative sensors in four clustering groups. The vaporization method and the chamber method showed statistical significance at a level of 99.9% (p<0.001) for all representative sensors in each clustering group. If the reactivity were improved by controlling the sensitivity of the sensor, the simple application method and vaporization method could also be used as a method of measuring the liquid material with gas sensor array.
SnO2:CNT thick films for gas sensors were fabricated by screen printing method on alumina substrates and were annealed at 300 oC in air. The nano SnO2 powders were prepared by solution reduction method using tin chloride (SnCl2.2H2O), hydrazine (N2H4) and NaOH. Nano SnO2:CNT sensing materials were prepared by ball-milling for 24h. The weight range of CNT addition on the SnO2 surface was from 0 to 10 %. The structural and morphological properties of these sensing material were investigated using X-ray diffraction and scanning electron microscopy and transmission electron microscope. The structural properties of the SnO2:CNT sensing materials showed a tetragonal phase with (110), (101), and (211) dominant orientations. No XRD peaks corresponding to CNT were observed in the SnO2:CNT powders. The particle size of the SnO2:CNT sensing materials was about 5~10 nm. The sensing characteristics of the SnO2:CNT thick films for 5 ppm H2S gas were investigated by comparing the electrical resistance in air with that in the target gases of each sensor in a test box. The results showed that the maximum sensitivity of the SnO2:CNT gas sensors at room temperature was observed when the CNT concentration was 8wt%.
The effects of an addition of CNT on the sensing properties of nano ZnO:CNT-based gas sensors were studied for H2S gas. The nano ZnO sensing materials were grown by a hydrothermal reaction method. The nano ZnO:CNT was prepared by ball-milling method. The weight range of the CNT addition on the ZnO surface was from 0 to 10%. The nano ZnO:CNT gas sensors were fabricated by a screen-printing method on alumina substrates. The structural and morphological properties of the ZnO:CNT sensing materials were investigated by XRD, EDS, and SEM. The XRD patterns revealed that nano ZnO:CNT powders with a wurtzite structure were grown with (1 0 0), (0 0 2), and (1 0 1) dominant peaks. The size of the ZnO was about 210 nm, as confirmed by SEM images. The sensitivity of the nano ZnO:CNT-based sensors was measured for 5 ppm of H2S gas at room temperature by comparing the resistance in air with that in target gases.
The effects of a Ni coating on the sensing properties of nano ZnO:Ni based gas sensors were studied for CH4 and CH3CH2CH3 gases. Nano ZnO sensing materials were prepared by the hydrothermal reaction method. The Ni coatings on the nano ZnO surface were deposited by the hydrolysis of zinc chloride with NH4OH. The weight % of Ni coating on the ZnO surface ranged from 0 to 10 %. The nano ZnO:Ni gas sensors were fabricated by a screen printing method on alumina substrates. The structural and morphological properties of the nano ZnO : Ni sensing materials were investigated by XRD, EDS, and SEM. The XRD patterns showed that nano ZnO : Ni powders with a wurtzite structure were grown with (1 0 0), (0 0 2), and (1 0 1) dominant peaks. The particle size of nano ZnO powders was about 250 nm. The sensitivity of nano ZnO:Ni based sensors for 5 ppm CH4 gas and CH3CH2CH3 gas was measured at room temperature by comparing the resistance in air with that in target gases. The highest sensitivity of the ZnO:Ni sensor to CH4 gas and CH3CH2CH3 gas was observed at Ni 4 wt%. The response and recovery times of 4 wt% Ni coated ZnO:Ni gas sensors were 14 s and 15 s, respectively.
Nanoporous non-woven carbon fibers for a gas sensor were prepared from a pitch/polyacrylonitrile (PAN) mixed solution through an electrospinning process and their gas-sensing properties were investigated. In order to create nanoscale pores, magnesium oxide (MgO) powders were added as a pore-forming agent during the mixing of these carbon precursors. The prepared nanoporous carbon fibers derived from the MgO pore-forming agent were characterized by scanning electron microscopy (SEM), N2-adsorption isotherms, and a gas-sensing analysis. The SEM images showed that the MgO powders affected the viscosity of the pitch/PAN solution, which led to the production of beaded fibers. The specific surface area of carbon fibers increased from 2.0 to 763.2m2/g when using this method. The template method therefore improved the porous structure, which allows for more efficient gas adsorption. The sensing ability and the response time for the NO gas adsorption were improved by the increased surface area and micropore fraction. In conclusion, the carbon fibers with high micropore fractions created through the use of MgO as a pore-forming agent exhibited improved NO gas sensitivity.
Nano-sized SnO2 thick films were prepared by a screen-printing method onto Al2O3 substrates. The sensing characteristics were investigated by measuring the electrical resistance of each sensor in a test box as a function of the detection gas. The nano-sized SnO2 thick film sensors were treated in a N2 atmosphere. The structural properties of the nano SnO2with a rutile structure according to XRD showed a (110) dominant SnO2 peak. The particle size of SnO2:Ni nano powders at Ni 8 wt% was about 45 nm, and the SnO2 particles were found to contain many pores according to the SEM analysis. The sensitivity of the nano SnO2-based sensors was measured for 5 ppm CH4 gas and CH3CH2CH3 gas at room temperature by comparing the resistance in air with that in the target gases. The results showed that the best sensitivity of SnO2:Ni and SnO2:Co sensors for CH4 gas and CH3CH2CH3 gas at room temperature was observed in SnO2:Ni sensors doped with 8 wt% Ni. The response time of the SnO2:Ni gas sensors was 10 seconds and recovery time was 15 seconds for the CH4 and CH3CH2CH3 gases.
Indium doped SnO2 thick films for gas sensors were fabricated by a screen printing method on alumina substrates. The effects of indium concentration on the structural and morphological properties of the SnO2 were investigated by X-ray diffraction and Scanning Electron Microscope. The structural properties of the SnO2:In by X-ray diffraction showed a (110) dominant SnO2 peak. The size of SnO2 particles ranged from 0.05 to 0.1 μm, and SnO2 particles were found to contain many pores, according to the SEM analysis. The thickness of the indium-doped SnO2 thick films for gas sensors was about 20 μm, as confirmed by cross sectional SEM image. Sensitivity of the SnO2:In gas sensor to 2000 ppm of CO2 gas and 50 ppm of H2S gas was investigated for various indium concentrations. The highest sensitivity to CO2 gas and H2S gas of the indium-doped SnO2 thick films was observed at the 8 wt% and 4 wt% indium concentration, respectively. The good sensing performances of indium-doped SnO2 gas sensors to CO2 gas were attributed to the increase of oxygen vacancies and surface area in the SnO2:In. The SnO2:In gas sensors showed good selectivity to CO2 gas.
Sn doped In2O3 (ITO) and ITO/Cu/ITO (ICI) multilayer films were prepared on glass substrates with a reactive radiofrequency (RF) magnetron sputter without intentional substrate heating, and then the influence of the Cu interlayer on themethanol gas sensitivity of the ICI films were considered. Although both ITO and ICI film sensors had the same thicknessof 100nm, the ICI sensors had a sandwich structure of ITO 50nm/Cu 5nm/ITO 45nm. The ICI films showed a ten timeshigher carrier density than that of the pure ITO films. However, the Cu interlayer may also have caused the decrement of carriermobility because the interfaces between the ITO and Cu interlayer acted as a barrier to carrier movement. Although the ICIfilms had two times a lower mobility than that of the pure ITO films, the ICI films had a higher conductivity of 3.6·10-4Ωcmdue to a higher carrier density. The changes in the sensitivity of the film sensors caused by methanol gas ranging from 50 to500ppm were measured at room temperature. The ICI sensors showed a higher gas sensitivity than that of the ITO single layersensors. Finally, it can be concluded that the ICI film sensors have the potential to be used as improved methanol gas sensors.
A sensor element array for combinatorial solution deposition research was fabricated using LTCC (Low-temperature Co-fired Ceramics). The designed LTCC was co-fired at 800˚C for 1 hour after lamination at 70˚C under 3000 psi for 30 minutes. SnO2 sol was prepared by a hydrothermal method at 200˚C for 3 hours. Tin chloride and ammonium carbonate were used as raw materials and the ammonia solution was added to a Teflon jar. 20 droplets of SnO2 sol were deposited onto a LTCC sensor element and this was heat treated at 600˚C for 5 hours. The gas sensitivity (S = Ra/Rg) values of the SnO2 sensor and 0.04 wt% Pd-added SnO2 sensor were measured. The 0.04 wt% Pd-added SnO2 sensor showed higher sensitivity (S = 8.1) compared to the SnO2 sensor (S = 5.95) to 200 ppm CH3COCH3 at 400˚C.
고주파 스피터 방법으로 제조된 SnO2감지막 위에 에어로졸 화염 증착법으로 알루미나 표면 보호층을 증착하여 SnO2박막 가스 센서의 감지 특성에 미치는 영향에 대햐여 조사하였고, 표면 보호층에 귀금속 Pt를 도핑하여 Pt의 함량이 CO 및 CH(sub)4 가스들의 선택성에 미치는 영향에 대하여 조사하였다. SnO2박막은 R.F power 50 W, 공정 압력 4 mtorr, 기판온도 200˚C에서 30분간 0.3μm 두께로 Pt 전극 위에 제조하였고, 질산알루미늄(Al(NO3).9H2O) 용액을 희석하여 에어로졸 화염증착법으로 알루미나 표면 보호층을 만든후 600˚C에서 6시간동안 산소분위기에서 열처리하였다. 알루미나 표면 보호층이 증착된 SnO2가스 센서소자의 경우 보호층이 없는 가스 센서와 비교하여 CO 가스에 대한 감도는 매우 감소하였으나 CH4가스에 대한 감도 특성은 순수한 SnO2센서 소자와 비슷하였다. 결과적으로 보호층을 이용하여 CH4가스에 대한 상대적인 선택성 증가를 이룰 수 있었다. 특히 표면 보호층에 Pt가 첨가된 센서 소자의 경우 CO 가스에 대해서는 낮은 감도 특성을 나타내었으나 CH4에 대한 감도는 매우 증가하여 CH4가스의 선택성을 더욱 증대시킬 수 있었다. CH4가스 선택성 향상에 미치는 알루미나 표면 보호층과 Pt의 역할에 대하여 고찰해 보았다.