검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 14

        2.
        2015.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The galactic magnetic field (GMF) and the intergalactic magnetic field (IGMF) affect the propagation of ultra-high energy cosmic rays (UHECRs) from the source to us. Here we examine the in uences of the GMF/IGFM and the dependence of their sky distribution on galactic latitude, b. We analyze the correlation between the arrival direction (AD) of UHECRs observed by the Pierre Auger Observatory and the large-scale structure of the universe in regions of sky divided by b. Specifically, we compare the AD distribution of observed UHECRs to that of mock UHECRs generated from a source model constructed with active galactic nuclei. Our source model has the smearing angle as a free parameter that re ects the de ection angle of UHECRs from the source. The results show that larger smearing angles are required for the observed distribution of UHECRs in lower galactic latitude regions. We obtain, for instance, a 1σ credible interval for smearing angle of 0° ≤ θs ≤ 72° at high galactic latitudes, 60° < b ≤ 90°, and of 75° ≤ θs ≤ 180°, -30° ≤ b ≤ 30°, at low galactic latitudes, respectively. The results show that the in uence of the GMF is stronger than that of the IGMF. In addition, we can estimate the strength of GMFs by these values; if we assume that UHECRs would have heavier nuclei, the estimated strengths of GMF are consistent with the observational value of a few μG. More data from the future experiments may make UHECR astronomy possible.
        3,000원
        5.
        2010.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Abstract In this study characteristics of Al-doped ZnO thin film by HIPIMS (High power impulse sputtering) are discussed. Deposition speed of HIPIMS with conventional balanced magnetic field is measured at about 3 nm/min, which is 30% of that of conventional RF sputtering process with the same working pressure. To generate additional magnetic flux and increase sputtering speed, electromagnetic coil is mounted at the back side of target. Under unbalanced magnetic flux from electromagnet with 1.5A coil current, deposition speed of AZO thin film is increased from 3 nm/min to 4.4 nm/min. This new value originates from the decline of particles near target surface due to the local magnetic flux going toward substrate from electromagnet. AZO film sputtered by HIPIMS process shows very smooth and dense film surface for which surface roughness is measured from 0.4 nm to 1 nm. There are no voids or defects in morphology of AZO films with varying of magnetic field. When coil current is increased from 0A to 1A, transmittance of AZO thin film decreases from 80% to 77%. Specific resistance is measured at about 2.9×10-2Ω·cm. AZO film shows C-axis oriented structure and its grain size is calculated at about 5.3 nm, which is lower than grain size in conventional sputtering.
        4,000원
        7.
        2006.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The relationship between electrical properties of superconductor and externally applied magnetic field was studied to develop a magnetic field sensor. The electrical resistance of the superconductor was increased by applying external magnetic field and even after removal of the magnetic field. This behavior was related to the magnetic flux trapped in the superconductor, which penetrated through the material by the external magnetic field. Some portion of the superconductor was changed to a normal state by the trapped magnetic flux. The appearance of the normal state yielded to enhance the electrical resistance.
        4,000원
        8.
        2006.04 구독 인증기관·개인회원 무료
        We have demonstrated that textured nanocomposites can be fabricated by slip casting followed by partial oxidation. reaction sintering of mixed suspensions of and SiC powders in a high magnetic field. The sintered density was changed by the degree of oxidation at 1200C and 1300C. The degree of orientation of alumina in the nanocomposite was examined on the basis of the X-ray diffraction patterns and scanning electron micrographs. It is confirmed that aluminaoriented nanocomposites were fabricated. The three-point bending strength at room temperature was observed for the nanocomposites.
        9.
        2006.04 구독 인증기관·개인회원 무료
        We have demonstrated that textured nanocomposites can be fabricated by slip casting followed by partial oxidation - reaction sintering of mixed suspensions of and SiC powders in a high magnetic field. The sintered density was changed by the degree of oxidation at 1200C and 1300C. The degree of orientation of alumina in the nanocomposite was examined on the basis of the X-ray diffraction patterns and scanning electron micrographs. It is confirmed that alumina-oriented nanocomposites were fabricated. The three-point bending strength at room temperature was observed for the nanocomposites.
        10.
        2013.06 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        We use the outer gap model to explain the spectrum and the energy dependent light curves of the X-ray and soft γ-rayradiations of the spin-down powered pulsar PSR B1509-58. In the outer gap model, most pairs inside the gap are createdaround the null charge surface and the gap’s electric field separates the opposite charges to move in opposite directions.Consequently, the region from the null charge surface to the light cylinder is dominated by the outflow current and that fromthe null charge surface to the star is dominated by the inflow current. We suggest that the viewing angle of PSR B1509-58 onlyreceives the inflow radiation. The incoming curvature photons are converted to pairs by the strong magnetic field of the star.The X-rays and soft γ-rays of PSR B1509-58 result from the synchrotron radiation of these pairs. The magnetic pair creationrequires a large pitch angle, which makes the pulse profile of the synchrotron radiation distinct from that of the curvatureradiation. We carefully trace the pulse profiles of the synchrotron radiation with different pitch angles. We find that thedifferences between the light curves of different energy bands are due to the different pitch angles of the secondary pairs, andthe second peak appearing at E > 10 MeV comes from the region near the star, where the stronger magnetic field allows thepair creation to happen with a smaller pitch angle.