검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 90

        1.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 논문에서는 역학적 변수들을 측정하는 방안으로 디지털 이미지 프로세싱과 강형식 기반의 MLS 차분법을 융합한 DIP-MLS 시 험법을 소개하고 추적점의 위치와 이미지 해상도에 대한 영향을 분석하였다. 이 방법은 디지털 이미지 프로세싱을 통해 시료에 부착 된 표적의 변위 값을 측정하고 이를 절점만 사용하는 MLS 차분법 모델의 절점 변위로 분배하여 대상 물체의 응력, 변형률과 같은 역 학적 변수를 계산한다. 디지털 이미지 프로세싱을 통해서 표적의 무게중심 점의 변위를 측정하기 위한 효과적인 방안을 제시하였다. 이미지 기반의 표적 변위를 이용한 MLS 차분법의 역학적 변수의 계산은 정확한 시험체의 변위 이력을 취득하고 정형성이 부족한 추 적 점들의 변위를 이용해 mesh나 grid의 제약 없이 임의의 위치에서 역학적 변수를 쉽게 계산할 수 있다. 개발된 시험법은 고무 보의 3 점 휨 실험을 대상으로 센서의 계측 결과와 DIP-MLS 시험법의 결과를 비교하고, 추가적으로 MLS 차분법만으로 시뮬레이션한 수치 해석 결과와도 비교하여 검증하였다. 이를 통해 개발된 기법이 대변형 이전까지의 단계에서 실제 시험을 정확히 모사하고 수치해석 결과와도 잘 일치하는 것을 확인하였다. 또한, 모서리 점을 추가한 46개의 추적점을 DIP-MLS 시험법에 적용하고 표적의 내부 점만을 이용한 경우와 비교하여 경계 점의 영향을 분석하였고 이 시험법을 위한 최적의 이미지 해상도를 제시하였다. 이를 통해 직접 실험이 나 기존의 요소망 기반 시뮬레이션의 부족한 점을 효율적으로 보완하는 한편, 실험-시뮬레이션 과정의 디지털화가 상당한 수준까지 가능하다는 것을 보여주었다.
        4,000원
        2.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Painting pretreatment is an important task in determining the life of painting as it removes rust or foreign substances from the painting surface and gives adhesion between the painting surface and the painting surface. Since painting pretreatment is an important task, IMO strictly requires that the painting pretreatment surface be maintained at a Sa 2.5 grade and the surface roughness is 30μm~75μm. Painting pre-processing is an important task that determines the lifespan of a painting, but it is done through visual inspection by the inspector, and the quality varies depending on the inspector. In this study, in order to develop a quality measurement system for the painting pretreatment surface, Matlab2023b was used to determine the range of appropriate quality brightness by comparing the brightness of the painting pretreatment surface and surface roughness.
        4,000원
        5.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        근래 산업은 기계 자동화로 변화하고 있는 추세이며, 선박도 센서를 통해 기기 정보를 디지털 정보로 얻는다. 하지만 선박은 기기상태 점검을 위해 선원들이 정해진 시간마다 기관실을 순찰하며 기기들의 정보를 아날로그 게이지를 통해 확인하는데, 이는 순찰 중 에 선원에게 발생할 수 있는 모든 안전 위험은 물론 시간과 기회비용 또한 소모된다. 자율이동로봇을 이용한 기관실 순찰 방법은 선원의 안전 위험은 물론 시간과 기회비용도 소모되지 않기 때문에 해결책으로 활발히 연구 중이다. 자율이동로봇을 이용한 아날로그 게이지 판 독은 로봇이 게이지를 인식하기 위한 디지털화가 필요하다. 이를 위해 본 연구에서는 이미지 처리를 이용하였다. 아날로그 게이지 이미지 는 이미지 전처리를 통해 노이즈 제거 및 특징을 부각 시켰다. 이미지 전처리를 완료한 이미지는 이미지 처리를 통해 아날로그 게이지의 중심점, 지침점, 최소값 및 최대값을 검출하였다. 이 점들을 연결한 직선을 통해 최소값부터 최대값까지의 각도 및 최소값부터 지침점까 지의 각도를 획득하였다. 각도는 수식을 통해 현재 아날로그 게이지가 나타내고 있는 값을 디지털화하여 나타내었다. 실험을 통해 이미지 처리를 통한 아날로그 게이지의 디지털화가 잘되어 게이지의 현재 지시값을 근사하게 나타냄을 확인할 수 있었다. 본 알고리즘을 순찰로 봇에 적용한다면 기관실 순찰을 위한 선원의 안전 위험 및 시간과 기회비용까지 보전 할 수 있을 것으로 사료된다.
        4,000원
        6.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        구조물의 안정성 및 이상 징후 판단에 있어 균열의 발생 여부와 진전 정도는 가장 기본적인 조사 항목이다. 본 연구 에서는 일반적인 스마트폰을 통해 균열 이미지를 촬영하고 이로 부터 균열 검출과 크기를 산정하는 균열 분석 시스템을 개발하 였다. 모폴로지 기법을 적용하되 투영변환 및 3차회선 보간, 히스토그램 기반의 명도 입계값 산정 기법을 적용함으로서 이미지 보정과 노이즈 제거 과정을 통한 효과적 균열 검출이 가능하였다. ArUco 마커를 통해 손쉽고 경제적인 균열 크기 산정이 가능 하였으며, 스마트폰 앱과 클라우드 서버 기반의 이원화 분석시스템을 통해 손쉬운 현장 적용성 및 처리 시간 단축, 세부 균열의 추적관리 가능성을 확인하였다. 개발 시스템을 이용한 실내 성능 평가를 수행한 결과, 균열 측정 오차는 0.03㎜ 미만으로 나타 났으며 조건별 다수 측정 결과에서 높은 재현성이 확인되었던바, 개발된 균열 분석 시스템의 정확성 및 현장 적용성을 예상할 수 있었다.
        4,000원
        7.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, we proposed and tested an indoor obstacle recognition and avoidance algorithm using vision and ultrasonic sensors for effective operation of drone with low-power. In this paper, the indoor flight of a drone is mainly composed of two algorithms. First, for the indoor flight of the drone, the vanishing point and the center point of the image were extracted through Hough transform of the input image of the vision sensor. The drone moves along the extracted vanishing point. Second, we set an area of interest so that the drone can avoid obstacles. The area of interest is a space where the drone can fly after recognizing an obstacle at a distance from the ultrasonic sensor. When an obstacle is recognized in the drone's area of ​​interest, the drone performs an obstacle avoidance action. To verify the algorithm proposed in this paper, a simple obstacle was installed in an indoor environment and the drone was flown. From the experimental results, the proposed algorithm confirmed the indoor flight and obstacle avoidance behavior of the drone according to the vanishing point.
        4,000원
        8.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        신안군 해역의 섬을 통한 관광사업이 활발해지면서 도서 간을 연결하는 해상교량은 현재까지 총 13개가 완공되었다. 그러나 통항로에 설치된 해상교량은 선박통항에 있어 위험성을 주며, 특히 섬과 섬을 연결하는 연도교의 경우 수로의 폭이 매우 좁아 그 위험도 는 더욱 높다. 본 연구는 신안군 해역의 연도교에 대한 해상교통조사를 토대로 교각과 선박의 충돌위험도를 항만수로의 위험도 평가 모 델인 IWRAP(IALA Waterway Risk Assessment Program)을 활용하여 평가하였다. 그 결과 신안1교가 충돌확률이 가장 높은 것으로 분석되었으 며, 통항선박의 대부분은 연안 여객선으로 나타났다. 또한, 신안1교는 대상해역의 교각 중 가장 충돌사고가 많이 발생한 곳으로 본 연구 에서는 그 원인을 분석하고자 하였다. 신안1교 해역환경의 위성사진을 영상처리기법으로 분석한 결과 해도에는 볼 수 없는 장애물이 교 량 근처에 존재하는 것을 확인할 수 있었다. 이로 인해 장애물을 피해 교량의 통항유도방식인 양방향 통항과 달리 한 방향으로 통항이 집 중되는 것을 알 수 있었다. 본 연구의 영상처리기법을 활용한 위험원인 분석방법은 향후 연도교의 위험요인 분석을 하는데 기초자료로 활용될 수 있을 것으로 기대된다.
        4,000원
        9.
        2022.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        한국 천일염 생산 지역의 인구는 빠르게 고령화되고 있어 생산 노동자가 줄고 있는 추세이다. 소금 포집 작업은 천일염 생산 과정에서 가장 많은 노동력을 필요로 한다. 기존의 포집 장치는 사람의 작동 및 운전이 필요하여 상당한 노동력이 필요해서, 천일염 무인 포집장치를 개발하여 생산 노동자의 노동력을 감소시키고자 한다. 천일염 포집장치는 색상 검출을 통해 소금의 포집 상황과 염전에서의 위치를 파악하도록 설계되었기 때문에, 포집장치의 색상 검출 성능이 중요한 요소이다. 그래서 색상 검출 성능 향상을 위해 이미지 처리 를 이용한 알고리즘을 연구하였다. 알고리즘은 입력 이미지를 크기 재조정, 회전 및 투시 변환을 이용하여 around-view 이미지를 생성하고, RoI를 설정하여 해당 영역만 HSV 색상 모델로 변환하고 논리곱 연산을 통해 색상 영역을 검출한다. 검출 된 색상영역은 형태학적 연산을 이용하여 검출 영역을 확장하고 노이즈를 제거하여 컨투어와 이미지 모멘트를 이용하여 검출영역의 면적을 계산하고 설정된 면적과 비 교하여 염판에서 포집장치의 위치 경우를 결정한다. 성능 평가는 알고리즘을 적용한 최종 검출 색상의 계산 면적과 알고리즘의 각 단계 의 검출 색상의 면적을 비교하여 평가하였다. 평가 결과 소금을 검출하는 흰색의 경우 최소 25%에서 최대 99% 이상, 빨간색의 경우 최소 44%에서 최대 68%, 파란색과 녹색은 평균적으로 각각 7%와 15% 검출면적 증가가 있어 색상 검출 성능이 향상되었음을 확인할 수 있었으 며, 이를 무인 천일염 포집장치의 무인작업 수행을 위한 위치 확인에 적용 가능할 것으로 사료된다.
        4,000원
        10.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 콘크리트 이미지에서 균열의 크기와 위치를 검출하는 알고리즘을 개발하였다. 균열은 총 9단계로 자 동 검출되었으며, 기본 기능은 매트랩 프로그램의 기능이었다. 5단계와 8단계에서는 균열 검출 정확도를 높이기 위해 사용자 알고리즘을 추가하였으며, 균열 영상과 비균열 영상을 각각 1,000개씩 사용하였다. 균열 이미지에서는 균열이 100% 검출됐지만 품질 측면에서 나쁘지 않은 결과를 제외하더라도 91.8%의 결과가 매우 양호했다. 또한, 균열되지 않은 이미지의 정확도도 94.7%로 매우 양호했다. 이에 본 연구에서 제시한 균열검출 알고리즘은 콘크리트 우물 균열의 위치와 크기를 검출할 수 있을 것으로 기대된다.
        4,000원
        13.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        우리나라는 여러 건의 여객선 사고를 겪으면서, 여객선 안전관리를 위해 다양한 제도를 운영하고 있다. 2021년 기준 우리나라 연안을 운항하는 여객선 162척 중, 차량갑판이 개방된 형태의 차도선이 105척(65 %)을 차지하고 있다. 차도선은 2~4개의 섬을 경유하는 운항 패턴을 가지고 있다. 출항지(모항)에서 안전점검은 선원과 운항관리실의 운항감독관, 해사안전감독관에 의해 실시된다. 경유지에서 의 안전점검은 자체점검이 실시되는 경우가 있다. 여느 제도와 마찬가지로 제도적, 현실적 한계 등이 있다. 이를 위해 영상처리기법을 활 용하여 차량을 검출하고 이를 선박 복원성 계산과 연동하는 방안을 제안하고자 본 연구를 수행하였다. 차량 검출을 위해 차영상을 이용 하는 방법과 기계학습을 이용하는 방법을 사용하였다. 검출된 데이터를 선박 복원성 계산에 활용하였다. 기계학습을 통해 차량을 검출하 는 경우, 차영상에 의한 차량 검출 방법보다 차량 식별에 안정적임을 알 수 있었다. 다만, 카메라가 일몰과 같은 상황에서 역광을 받는 경 우와 야간과 같은 상황에서 부두와 선박 내부의 강한 조명에 의해 차량이 식별되지 않는 한계가 있었다. 안정적인 영상처리를 위해 충분 한 영상 데이터 확보와 프로그램 고도화가 필요해 보인다.
        4,000원
        14.
        2021.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        I propose an algorithm to detect defects in the production of wire mesh using computer image processing. The process is explained as follows, First reading consecutive frames coming through the camera, then the preprocessing process is performed. Second calculate the absolute difference between the two images to distinguish the moving wire mesh from the unnecessary background image. Third based on the past moving data of the welded wire mesh, predict and track future movement. As a result of observing the samples of some defective welded wire mesh products, it was confirmed that the horizontal line of the defective wire mesh had a higher height value of the tracked wire netting. Therefore it is possible to judge whether there is a defect or not at the same time without any additional process to judge. Finally, shear strength test were performed on the welds determined to be normal products by the algorithm proposed in this paper, so that I could verify the reliability and validity of the proposed algorithm.
        4,000원
        17.
        2019.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 영상기반 딥러닝 및 이미지 프로세싱 기법을 이용한 볼트풀림 손상검출 기법을 제안하였다. 이를 위해 먼저, 딥러닝 및 이미지 프로세싱 기반 볼트풀림 검출 기법을 설계하였다. 영상기반 볼트풀림 검출 기법은 볼트 이미지 검출 과정 및 볼트풀림 각도 추정 과정으로 구성된다. 볼트 이미지의 검출을 위하여 RCNN기반 딥러닝 알고리즘을 이용하였다. 영상의 원근왜곡 교정을 위해 호모그래피 개념을 이용하였으며 볼트풀림 각도를 추정을 위하여 Hough 변환을 이용하였다. 다음으로 제안된 기법의 성능을 검증을 위하여 거더의 볼트 연결부 모형을 대상으로 볼트풀림 손상검출 실험을 수행하였다. 다양한 원근 왜곡 조건에 대하여 RCNN 기반 볼트 검출기와 Hough 변환 기반 볼트풀림 각도 추정기의 성능을 검토하였다.
        4,000원
        18.
        2018.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        콘크리트 구조물 표면에 발생하는 균열은 사용자에게 심리적인 불안감을 제공하며, 장기간 열려있는 큰 폭의 균열은 구조 물의 사용성능 및 내구성에 영향을 준다. 국내에서는 건축물을 포함한 시설물의 노후화에 따른 안전관리를 위해 균열정도를 파악하는 조사가 인력에 의한 육안조사로 수행되고 있지만 인력의 고비용성과 객관성 미흡 등의 문제점이 대두되고 있다. 이를 해결하기 위해 영상분석을 통한 균열 추출 등 다양한 연구가 수행되고 있으나 균열인식 정확도 향상에 2차원 영상 분석만으로는 한계가 있다. 따라서, 본 연구에서는 기존 2차원 영상 분석의 한계를 극복하기 위하여 3차원 특성을 정확하게 파악할 수 있는 3차원 광삼각 스캐닝기법을 활용하여 콘크리트 구조물 표면의 균열정보를 획득하는 기법을 개발하였다. 본 하 드웨어의 개발과 더불어 균열 패턴분석을 위한 획득된 균열의 세분화와 균열의 특성분석 알고리즘을 개발하였으며, 이를 실제 콘크리트 빔의 균열 탐지 적용을 통해 검증하였다.
        4,000원
        19.
        2018.04 구독 인증기관·개인회원 무료
        생태통로란 자연환경보전법 제2조 9호에 “도로, 댐, 수중 보, 하굿둑 등으로 인하여 야생동식물의 서식지가 단절되거나 훼손 또는 파괴되는 것을 방지하고 야생동식물의 이동 등 생태계의 연속성 유지를 위하여 설치하는 인공 구조물 식생 등의 생태적 공간”이라고 명시되어있다. 생태통로 모니터링은 생태통로를 이용하는 야생동물의 현황을 파악하고 설치의 실효성을 평가하여 개선방안을 마련하기 위함이 다. 현행 조사기법은 생태통로에 카메라 트랩을 설치하고, 정기적으로 조사자가 촬영 데이터를 회수하여 육안판독을 통해 야생동물 객체를 식별하여 정리하고 있다. 이러한 방식은 센서 카메라에 촬영된 동영상을 일일이 확인하여 진행 하므로 분석에 장시간이 소요되며 조사자의 종별 동정능력에 따라 조사결과의 품질 차이가 발생하는 한계가 있다. 최근 이미지 인식 분야에서 딥러닝을 활용한 기법은 영상 내 에서 객체를 자동 식별할 뿐만 아니라 개체 수, 이미지 설명 등을 높은 수준의 정확도로 탐지하고 있다. 따라서 카메라 트랩에 딥러닝 기법을 적용하면 야생동물의 동정, 탐조 및 움직임 정보 등을 자동적으로 데이터베이스화할 수 있다. 본 연구는 이미지 인식 분야 딥러닝 기법을 생태통로 모니터링에 적용함으로써 기존 육안판독의 소요시간을 줄이고, 인적오류를 최소화하는데 그 목적이 있다. 연구지역은 소백산국립공원 죽령생태통로를 선정하였다. 죽령 생태통로는 소백산국립공원 내 유일한 생태통로로 공원구역을 가로지르는 국도 5호선에 의해 단절된 서식처를 연결하고 야생동물의 휴식처로서의 역할을 수행하고 있 다. 터널형 생태통로로, 폭 약 8m, 길이 21m의 규모이다. 2003년에 설치되었으며 2004년부터 국립공원관리공단이 위임받아 현재 소백산국립공원북부사무소가 관리하고 있다. 국립공원 생태통로 중 가장 많은 자료가 축적(2011년 -2015년 집계 기준)된 곳으로, 2005년부터 현재까지 13년 간의 모니터링 자료가 축적되어 있다. 따라서 딥러닝 학습 을 위한 데이터 확보가 용이하다. 본 실험은 카메라 트랩의 딥러닝 기반 영상분석을 실험하는 초기연구이기 때문에 비교적 간단한 신경망 모델과 소량의 데이터를 이용하여 가능성을 검증하였다. 딥러닝은 영상 인 식 분야에서 사용되는 합성곱 신경망(CNN, convolutional neural network) 기법을 적용하였다. 먼저 죽령 생태통로에서 발견 확률이 높은 삵, 고라니, 노루, 멧돼지, 너구리 5종에 대한 모니터링 자료(카메라 사진과 동영상)를 수집하였다. 동영상의 경우, 고정된 위치에서 움직이는 객체를 탐지해야 하기 때문에 컴퓨터 비전 기법을 통한 데이터 전처리를 수행 하였다. OpenCV(Open Source Computer Vision Library)는 영상추적 알고리듬을 제공하는데 이를 통해 야생동물 객체의 최소경계사각형을 탐지하고 각 프레임을 이미지로 저장하였다. 탐지된 이미지는 크기와 해상도가 제각각이기 때문에 CNN의 입력 데이터로 인식시켜주기 위해 100×100 화소 크기로 조정하였다. 딥러닝을 비롯한 머신러닝 문제는 일반적으로 데이터를 훈련 데이터와 시험 데이터로 나눠 학습과 실험을 수행한다. 훈련 데이터는 모델의 최적의 매개변수를 찾는데 사용 되며 시험 데이터는 앞서 훈련된 모델의 성능을 평가하는데 사용된다. 임의 추출을 통해 야생동물 종별로 1,000장의 훈 련 데이터와 400장의 시험 데이터(총7,000장)를 선택하였다. 훈련 데이터는 동물의 전신 이미지는 드물었으며 얼굴 과 몸의 일부만 촬영된 경우가 대부분이었다. CNN 모델은 5층 신경망으로 구성하였으며 이미지 규모를 고려하여 영상증강(image augmentation) 기법을 적용하였다. 모델 구현에는 오픈소스 딥러닝 라이브러리 TensorFlow와 Keras를 사용하였다. 실험결과, 야생동물 5종에 대한 CNN 모델은 96.25%의 정확도를 보였다. 고정된 카메라에서 촬영된 이미지는 야생 동물의 행동 패턴이 비교적 단순하여 객체 식별에 유리한 것으로 추정된다. 또한 생태통로를 이용하는 야생동물의 제한적인 종류는 예측 정확도에 기여도가 있을 것으로 판단된다. 현행 수동식별과 대비하여 본 기법의 적용은 조사 자동 화에 따른 시간절감과 객관적 품질 확보라는 측면에서 활용 잠재력이 높을 것으로 기대된다. 모델이 최종적으로 정립되 면, 조사자가 회수된 현장 데이터를 입력만 하면 생태통로 모니터링 통계를 자동 계산하는 프로그램으로 제공 가능할 것이다. 이번 실험에서는 CNN의 생태통로 모니터링 적용 가능성을 검증해 본 것으로 간단한 모델과 데이터를 통해 그 가능성을 확인하였다. 현재 카메라 트랩 이미지를 대상 으로 CNN의 최신 연구들이 진행 중이나, 실제 적용해 본 바로는 자동 전처리에 관한 연구가 충분히 이뤄져야 할 것 으로 판단된다. 차기 연구에서는 사전 학습된 CNN 모델에 현장 이미지를 추가한 트랜스퍼 러닝(transfer learning)을 적용하여 범용적인 활용도를 평가해보고자 한다.
        20.
        2017.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We propose a custom analysis technique for the dark field (DF) image based on transmission electron microscopy (TEM). The custom analysis technique is developed based on the DigitalMicrograph® (DM) script language embedded in the Gatan digital microscopy software, which is used as the operational software for most TEM instruments. The developed software automatically scans an electron beam across a TEM sample and records a series of electron diffraction patterns. The recorded electron diffraction patterns provide DF and ADF images based on digital image processing. An experimental electron diffraction pattern is recorded from a IrMn polycrystal consisting of fine nanograins in order to test the proposed software. We demonstrate that the developed image processing technique well resolves nanograins of ~ 5 nm in diameter.
        4,000원
        1 2 3 4 5