검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2020.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the failure characteristic of the center floor of a front-wheel drive vehicle was investigated according to material. UHSS, Al6061-T6, CFRP, and CFRP-Al were used as materials. As the analysis condition, a fixed support was applied to the rear surface of the center floor and a forced displacement of 2 mm/sec was applied to the front surface. As the result, when comparing with the equivalent stress and strain energy according to the material, it was found that UHSS, Al6061-T6, CFRP, and CFRP-Al were higher in the order. Also, when comparing with the equivalent strain due to the material, it was shown that the equivalent strain was high in the order of Al6061-T6, UHSS, CFRP and CFRP-Al. As for the damage characteristic of the center floor according to the material, it was found that the highest structural stability was obtained when UHSS was used. However, it was found that it was good to utilize Al6061-T6 in order to acquire the structural stability along with the structure with the lighter weight.
        4,000원
        3.
        2017.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we changed the existing S45C steel shafts applied to the drive shaft for power train of automotive to Al7003-T6 aluminum material. For this purpose, the optimal inner diameter of the aluminium shaft is established. And, analysis of the stresses and vibration characteristics of shafts were analyzed through finite element analysis. The final aluminum drive shaft was evaluated through the static torsional torque test and the frequency test. The Al7003-T6 aluminum drive shaft's weight is 67% comparing from 100% of shaft with existing steel, and with the performance of 3,276 N-m and 236 Hz, it satisfies requirements of the torsional torque of 3,000 N-m and vibration characteristic over 150 Hz required for drive shaft.
        4,000원
        4.
        2016.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Finite Element analysis were carried out to investigate the deformation behaviours of a buckled automotive seat frames made of three different types of materials, i.e., SAPH440, Al6082-T6 and Al7021-T7, when they were subject to external load, based on the ECE R14 regulation to achieve lightweight structure. Also, several thicknesses were applied to the seat frame structures of each material for characterising deformations. It was found that light weight seat frame structure was obtained compared to conventional steel structure when it was made of aluminium under the condition of satisfying ECE R14 regulation. Interpretation result, when changing from SAPHH440 material has a thickness of 1.5mm to Al material has a thickness of 3.0mm, that could checking weight lightening about 47%.
        4,000원
        5.
        2014.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Microstructural and mechanical characteristics of Al-6Si-2Cu alloy for lightweight automotive parts were investigated. The test specimens were prepared by gravity casting process. Solution heat treatments were applied to as-cast alloys to improve mechanical properties. The microstructure of the gravity casting specimen presents a typical dendrite structure, having a secondary dendrite arm spacing (SDAS) of 37μm. In addition to the Al matrix, a large amount of coarsened eutectic Si, Al2Cu intermetallic phase, and Fe-rich phases were identified. After solution heat treatment, single-step solution heat treatments were found to considerably improve the spheroidization of the eutectic Si phase. Two-step solution treatments gave rise to a much improved spheroidization. The mechanical properties of the two-step solution heat treated alloy have been shown to lead to higher values of properties such as tensile strength and microhardness. Consequentially, the microstructural and mechanical characteristics of Al alloy have been successfully characterized and are available for use with other basic data for the development of lightweight automotive parts.
        4,000원