검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 11

        1.
        2013.12 구독 인증기관 무료, 개인회원 유료
        We measured the grain size and metallics elements (Li, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, Hg, Pb, Fe and As) of surface sediments collected from 27 sampling sites in the Abalone aquaculture. The concentration range and average value of metallics elements were also below the sediment quality guidelines (TEL). As the pollution level was estimated by using enrichment factor (Ef) and index of geoaccumulation (Igeo), the enrichment factor (Ef) was about 1 for most of metallic elements were smaller than 1. However Arsenic (As) had highest value of 2.35. Index of geoaccumulation (Igeo) for the metallic elements (As, Pb and Mn) were ranged Igeo-class 0 (practically unpolluted) and most metallics elements (Li, V, Cr, Fe, Co, Ni, Cu, Zn, Cd, Hg and Fe) were ranged Igeo-class 0~2, indicating that the pollution levels of metallic elements should not be significant. It is necessary to keep monitoring pollution level in Abalone aquaculture to conserve the blue belt.
        4,000원
        4.
        2010.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 2006년부터 2008년까지 3년간 봄철에 PM10과 PM2.5를 채취하여 질량농도와 금속원소의 화학적 특성, 기상인자와의 관계 분석, 황사 및 비황사시의 미세먼지 특성 그리고 이동경로에 따른 농도의 특성을 고찰하였다. 연구기간동안의 PM10, PM2.5, PM10-2.5평균농도는 각각 126.2±89.8, 85.5±41.6, 40.7±54.9μg/m3이었으며 PM2.5/PM10 및 PM10-2.5/PM2.5 비는 각각 0.70, 0.48이었다. 우리나라의 북서쪽인 북경을 포함한 지역과 서쪽인 상해를 포함한 지역에서 공기덩어리가 이류 할 때 가장 높은 미세먼지농도를 나타내었다.
        4,300원
        5.
        2005.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        부산지역에서 PM10 과 PM2.5중의 금속 성분 농도를 파악하기 위하여 2004년 3월부터 2004년 12월까지 조사하였다. PM10의 평균농도는 58.2μg/m3 농도범위는 8.3~161.1μg/m3이었으며, PM2.5의 평균농도는 29.3μg/m3, 농도범위는 2.8~65.3μg/m3였다. PM10의 평균 질량농도는 황사시 121.5μg/m3, 비황사시 56.0μg/m3로 나타났다. 10 이상의 지각농축계수를 보인 성분은 Cd, Cr, Cu, Ni, Pb 및 Zn로서 인위적기원을 받은 것으로 추정된다. PM10과 PM2.5 중 미량금속 성분의 지각농축계수는 황사시보다 비황사시에 높게 나타났으며, 인근의 공단지역으로부터 인위적 오염물질이 수송된 것으로 추정된다. PM10과 PM2.5의 토양입자의 평균 기여율은 각각 15.2%와17.5%였다. 토양기여율의 황사/비황사비는 PM10과 PM2.5에서 각각 1.9와 2.1로 나타났다.
        4,200원
        6.
        2016.05 KCI 등재 서비스 종료(열람 제한)
        This study investigates the characteristics of metallic and ionic elements concentration, concentration according to transport path, and factor analysis in PM10 at Guducsan in Busan in the springtime of 2015. PM10 concentration in Guducsan and Gwaebeopdong were 59.5± 9.04 ㎍/㎥ and 87.5±20.2 ㎍/㎥, respectively. Contribution rate of water-soluble ions and secondary ion in PM10 concentration in Guducsan were 37.0% and 27.8% respectively. [NO3 -/SO4 2-] ratio and contribution rate of sea salt of PM10 in Guducsan and Gwaebeopdong were 0.91 and 1.12, 7.0% and 5.3%, respectively. The results of the backward trajectory analysis indicates that PM10 concentration, total inorganic water-soluble ions and total secondary ions were high when the air parcels moved from Sandong region in China than non-Sandong and northen China to Busan area. The results of the factor analysis at Guducsan indicates that factor 1 was anthropogenic source effects such as automobile emissions and industrial combustion processes, factor 2 was marine sources such as sea salts from sea, and factor 3 was soil component sources.
        7.
        2015.06 KCI 등재 서비스 종료(열람 제한)
        This study investigates weekday/weekend characteristics of PM10 and PM2.5 concentration and metallic elements in Busan in the springtime of 2013. PM10 concentration on weekday/weekend were 77.54 and 67.28 ㎍/㎥, respectively. And PM2.5 concentration on weekday/weekend were 57.81 and 43.83 ㎍/㎥, respectively. Also, PM2.5/PM10 concentration ratio on weekdays/weekend was 0.75 and 0.65, respectively. The contribution rates of Na to total metallic elements in PM10 on weekday/weekend were 38.3% and 38.9%, respectively. It would be useful in control effectively with management of urban fine particle to understand characteristics of fine particle concentration on weekday/weekend.
        8.
        2014.04 KCI 등재 서비스 종료(열람 제한)
        This study aims to investigate the indoor air quality by analyzing PM10 concentration and metallic elements collected from high school( classroom, science room, assembly room). PM10 concentration of a classroom, a science room, and an assembly hall during the research period was 87.7 ㎍/m3, 75.3㎍/m3, 64.6㎍/m3, respectively. Si of PM10 had highest concentration with 15,427 ng/m3 followed by Na which had 7,205 ng/m3, and the order was Si>Na>Ca>Mg>Fe>K in the classroom. PM10 concentration of a classroom and a science room was each 104.8 ㎍/m3 and 75.3 ㎍/m3 during the semester and PM10 concentration of a classroom and an assembly hall was each 80.9 ㎍/m3 and 64.6 ㎍/m3 during the summer vacation. Based on PM10 and metallic concentration at a classroom on day of week, the concentration of Friday was highest with 112.0 ㎍/m3, and that of Monday was lowest with 65.3 ㎍/m3.
        9.
        2013.07 KCI 등재 서비스 종료(열람 제한)
        The aim of this study was to investigate the accumulation of metallic elements and the control effect of marine pollution caused by ocean dumping in the sediments at a waste disposal area in the Yellow Sea. In July 2009, concentrations of organic matter and metallic elements (Al, Fe, As, Cd, Cr, Co, Hg, Ni, Mn, Pb, and Zn) were measured in surface sediments at the site. The ignition loss (IL) in the surface sediments showed a mean value of 15.4%, about 1.5 times higher than the mean value of the sediments in the coastal areas of Korea. The chemical oxygen demand (COD) at some disposal sites exceeded 20 ㎎ O2/g·dry, which signifies the initial concentration of marine sediment pollutants in Japan. The disposal sites contain higher concentrations of Cr, Cu and Zn than the sediments of bays and estuaries that might be contaminated. The magnitude of both metal enrichment factors (EF) and adverse biological effects suggest that pollution with Cr and Ni occurred due to the dumping of waste in the study area. In addition, the geoaccumulation index (Igeo) showed that the surface sediments were moderately contaminated. By the mid-2000s, when the amount of waste dumped at this site was the highest, the concentration of metallic elements was higher than ever recorded. On the other hand, in 2008-09, the need for environmental management was relatively low compare with the peak. As a result, the quality of marine sediment has been enhanced, considering the effect of waste reduction and natural dilution in the disposal area.
        10.
        2013.03 KCI 등재 서비스 종료(열람 제한)
        Land application of biochar (or charcoal) has increasingly been recognized due to its favorable effect as soil amendments. However, depending upon the nature of biomass and pyrolysis condition, biochar may be rich in hazardous inorganic elements. Giant Miscanthus showed its potential as a promising source for biochar manufacture but, the risk of heavy metal leaching from Giant Miscanthus-derived biochar (GMB) has not investigated. The objective of this study was to investigate the heavy metal leachability of GMB manufactured from 3 different temperatures (400, 500, and 700oC). Elemental composition of C, N, H, S, O and 18 metals were analyzed. Leaching concentration of As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn was analyzed using 4 different methods (0.1 N HCl, 1 N NH4OAc, toxicity characteristic leaching procedure, and synthetic precipitation leaching procedure). For comparison, same analysis were performed for two char materials, municipal solid waste char (MWC) and sewage sludge char (SSC), manufactured from pilot-scale muncipal waste gasification plant. Elemental composition of GMB complied with the fertilizer guideline whereas the several heavy metal content (Cd, Ni, Pb, and Zn for MWC, Cr, Cu, Ni, and Zn for SSC) was beyond the criteria. From leaching test, concentration of heavy metals from GMB was positively increased with pyrolysis temperature and the acidity of extractant solution. Leaching concentration of plant nutrients (Ca, K, and Mg) was the highest by 1N NH4OAc. Meanwhile, leaching concentration of Cu from MWC and Pb from SSC exceeded the regulatory standard of Korea and US EPA, respectively. In conclusion, with respect to the risk of heavy metals, Giant Miscanthus-derived biochar will be suitable for land application as a soil amendment, while care should be taken for using municipal waste-derived char materials.
        11.
        2011.01 KCI 등재 서비스 종료(열람 제한)
        The objectives of this study were to investigate the seasonal characteristics of metallic and ion elements of PM10(Particulate matter with aerodynamic diameter ≤10 ㎛) and the effects of vessels exhaust emission from ships harboring in Busan City. The PM10 samples were collected from January 2010 to October 2010 at Dongsam-dong(coastal area), in Busan City. The particulate matters were analyzed for major water soluble ionic components and metals. The ranges of the PM10 mass concentrations were from 29.8 ㎍/㎥ to 47.0 ㎍/㎥ in Dongsam-dong. The PM10 mass concentrations in Dongsam-dong are very similar to Gwangbok-dong during same sampling periods. These results were understood by the effects of the shipping source emitted from ships anchoraging and running. The concentrations of water-soluble ions and metals in the PM10 had a level of as high as the order of SO4 2- >NO3 - >Cl - and NH4 + >Na + >Ca 2+ >K + >Mg 2+ , respectively. The correlation coefficients(R 2 ) for SO4 2- /PM10 and NH4 + /PM10 of were 0.7446 and 0.7784, respectively, and it showed the high correlation with each other.