For the aim of low-temperature co-fired ceramic microwave components, sintering behavior and microwave properties (dielectric constant , quality factor Q, and temperature coefficient of resonant frequency ) are investigated in [BCZN] ceramics with addition of . The specimens are prepared by conventional ceramic processing technique. As the main result, it is demonstrated that the additives () show the effect of lowering of sintering temperature and improvement of microwave properties at the optimum additive content. The addition of 0.25 wt% lowers the sintering temperature to utilizing liquidphase sintering and show the microwave dielectric properties (dielectric constant = 75, quality factor = 572 GHz, temperature coefficient of resonance frequency ). The estimated microwave dielectric properties with addition (increase of , decrease of , shift of to negative values) can be explained by the observed microstrucure (sintered density, abnormal grain structure) and possibly high-permittivity (BZN) phase determined by X-ray diffraction.
We present a systematic study of the heating and pre-sintering behavior of porous copper powder metal compacts. We employ a TE102 single mode microwave system to position the samples in the separated electric field (E) or magnetic field (H) anti-node of the cavity. We observe significant differences in the heating, pre-sintering, and microstructure evolution of the samples due to the individual fields. We note that sample history (whether heated first in the E-field or H-field) greatly effects a difference in heating trends and subsequent heating behavior and does not appear to be solely a thermal process.
WC-6wt%Co hard metal powders were sintered by a 2.45 GHz multimode microwave applicator in Ar atmosphere. Microwave sintering of WC-6wt%Co powder lowered the sintering temperature and shortened the processing time in less than two hours than by a conventional method. Microstructures of the sintered specimen were studied with scanning electron microscope (SEM) and no abnormal grain growth was observed. Mechanical properties were similar to the values of the specimens sintered by a conventional method. Specimen sintered at 135 for 30 minutes ,hewed 99%, 20.5 GPa and 8.1 MPa of theoretical density, hardness and fracture strength, respectively.