높은 종횡비와 원자 수준의 얇은 두께를 갖는 다공성 2D 소재는 고성능 분리막 제작에 활용된다. 이를 위해서는 다공성 2D 소재를 다공성 지지체 위에 균일하게 도포할 수 있는 코팅법이 필수이다. 본 연구는 이를 위한 제올라이트 MFI 나노막의 간단하면서도 효과적인 코팅법을 제시한다. 직접합성법으로 합성된 제올라이트 MFI 나노막은 물에 분산되면서 동 시에 표면 활성을 보여, 이 특성을 활용하여 소수성 계면에 흡착시키는 것이 가능하다. 소수성 개질을 다양한 형태의 지지체 에 적용하여, 이들 표면에 고밀도의 나노막 흡착 코팅이 가능함을 보였다. 또한, 이 흡착코팅의 반복 수행을 통해 나노막의 완전피복을 달성하고, 이를 연속적인 MFI 필름 및 멤브레인으로 성장시킬 수 있었다. 이 간단한 코팅법은 제올라이트 나노막 뿐만 아니라, 표면활성을 보이는 다른 2D 소재에도 적용 가능할 것으로 보이며, 2D 소재의 활용도를 제고할 수 있을 것이다.
Black phosphorus (BP) is incorporated in the electrochemical detection of uric acid (UA) to form few layers of BP nanosheets (BPNS)-modified glassy carbon electrodes (BPNS/GCE), investigated by means of ultrasound-assisted liquid-phase exfoliation. We find a significant increase in the peak current magnitude and positive potential shift in the electrochemical response of BPNS/GCE, which may be attributed to the larger specific surface area and good charge transfer ability of BPNS. Further, the electrochemical response of BPNS/GCE is evaluated under different conditions to achieve the optimal conditions. UA detection using differential pulse voltammetry (DPV) shows linear response within the range of 1–1000 μM with a detection limit of 0.33 μM. This work reveals new applications of BP nanomaterials in the electrochemical sensing, thereby promoting further advancement in terms of practical applications of two-dimensional nanomaterials.
Dimethyl silicone oil is widely used due to its excellent thermal stability and good wetting properties. In this study, a series of thermal conductive materials was prepared by physically blending and chemically loading graphene as a thermal conductive filler into dimethyl silicone oil, and their thermal conductivity and tribological properties were investigated. The thermal conductivity of the composites was tested by a thermal conductivity meter and a thermal imaging camera, while the tribological properties of the composites were evaluated using a CSM friction and wear tester. The results showed that both thermal conductivity and tribological properties were improved to a certain extent. The particle size and amount of graphene had a significant influence on the thermal conductivity. For graphene with a single particle size, the thermal conductivity increased with increasing graphene content. The friction coefficient under dry friction conditions was significantly reduced by adding graphene to the silicone oil, as revealed by the friction and wear test.
This comprehensive study delves into the intricate process of exfoliating and functionalizing boron nitride nanosheets (BNNSs) extracted from hexagonal boron nitride (h-BN), and meticulously explores their potential application within epoxy composites. The extensive research methodology encompasses a sequence of treatments involving hydrothermal and sonication processes aimed at augmenting the dispersion of BNNSs in solvents. Leveraging advanced analytical techniques such as Raman spectroscopy, X-ray diffraction, and FTIR spectroscopy, the study rigorously analyzes a spectrum of changes in the BNNS’s properties, including layer count variations, interlayer interactions, crystal structure modifications, and the introduction of functional groups. The research also rigorously evaluates the impact of integrating BNNSs, specifically glycidyl methacrylate (GMA)-functionalized BNNSs, on the thermal conductivity of epoxy composites. The conclusive findings exhibit notable enhancements in thermal properties, predominantly attributed to the enhanced dispersion of fillers and enhanced interactions within the epoxy matrix. This pioneering work illuminates the wide potential of functionalized BNNSs for significantly enhancing the thermal conductivity of epoxy composites, paving the way for advanced materials engineering and practical applications.
Decabromodiphenyl ether (BDE209) is a persistent aromatic compound widely associated with environmental pollutants. Given its persistence and possible bioaccumulation, exploring a feasible technique to eradicate BDE209 efficiently is critical for today’s environmentally sustainable societies. Herein, an advanced nanocomposite is elaborately constructed, in which a large number of titanium dioxide ( TiO2) nanoparticles are anchored uniformly on two-dimensional graphene oxide (GO) nanosheets ( TiO2/GO) via a modified Hummer’s method and subsequent solvothermal treatment to achieve efficient photocatalytic degradation BDE209. The obtained TiO2/ GO photocatalyst has excellent photocatalytic due to the intense coupling between conductive GO nanosheets and TiO2 nanoparticles. Under the optimal photocatalytic degradation test conditions, the degradation efficiency of BDE209 is more than 90%. In addition, this study also provides an efficient route for designing highly active catalytic materials.
Transition metal oxides formed by a single or heterogeneous combination of transition metal ions and oxygen ions have various types of crystal structures, which can be classified as layered structures and non-layered structures. With non-layered structures, it is difficult to realize a two-dimensional structure using conventional synthesis methods. In this study, we report the synthesis of cobalt oxide into wafer-scale nanosheets using a surfactant-assisted method. A monolayer of ionized surfactant at the water-air interface acts as a flexible template for direct cobalt oxide crystallization below. The nanosheets synthesized on the water surface can be easily transferred to an arbitrary substrate. In addition, the synthesizing morphological and crystal structures of the nanosheets were analyzed according to the reaction temperatures. The electrochemical properties of the synthesized nanosheets were also measured at each temperature. The nanosheets synthesized at 70 °C exhibited higher catalytic properties for the oxygen evolution reaction than those synthesized at other temperatures. This work suggests the possibility of changing material performance by adjusting synthesis temperature when synthesizing 2D nanomaterials using a wide range of functional oxides, resulting in improved physical properties.
Biomass carbon materials with high rate capacity have great potential to boost supercapacitors with cost effective, fast charging– discharging performance and high safety requirements, yet currently suffers from a lack of targeted preparation methods. Here we propose a facile FeCl3 assisted hydrothermal carbonization strategy to prepare ultra-high rate biomass carbon from apple residues (ARs). In the preparation process, ARs were first hydrothermally carbonized into a porous precursor which embedded by Fe species, and then synchronously graphitized and activated to form biocarbon with a large special surface area (2159.3 m2 g− 1) and high degree of graphitization. The material exhibited a considerable specific capacitance of 297.5 F g− 1 at 0.5 A g− 1 and outstanding capacitance retention of 85.7% at 10 A g− 1 in 6 M KOH, and moreover, achieved an energy density of 16.2 Wh kg− 1 with the power density of 350.3 W kg− 1. After 8000 cycles, an initial capacitance of 95.2% was maintained. Our findings provide a new idea for boosting the rate capacity of carbon-based electrode materials.
The oxygen evolution reaction (OER) is very sluggish compared to the hydrogen evolution reaction (HER). Considering this difference is essential when designing and developing a cost-effective and facile synthesis method for a catalyst that can effectively perform OER activity. The material should possess a high surface area and more active sites. Considering these points, in this work we successfully synthesized sheets of cobalt phosphate hydrate (CP) and sulphurated cobalt phosphate hydrate (CPS) material, using simple successive ionic layered adsorption and reaction (SILAR) methods followed by sulfurization. The CP and CPS electrodes exhibited overpotentials of 279 mV with a Tafel slope of 212 mV dec1 and 381 mV with a Tafel slope of 212 mV dec1, respectively. The superior performance after sulfurization is attributed to the intrinsic activity of the deposited well-aligned nanosheet structures, which provided a substantial number of electrochemically active surface sites, speeded electron transfer, and at the same time improved the diffusion of the electrolyte.
Tungsten disulfide (WS2) nanosheets have attracted considerable attention because of their unique optical and electrical properties. Several methods for fabrication of WS2 nanosheets have been developed. However, methods for mass production of high-quality WS2 nanosheets remain challenging. In this study, WS2 nanosheets were fabricated using mechano-chemical ball milling based on the synergetic effects of chemical intercalation and mechanical exfoliation. The ball-milling time was set as a variable for the optimized fabricating process of WS2 nanosheets. Under the optimized conditions, the WS2 nanosheets had lateral sizes of 500–600 nm with either a monolayer or bilayer. They also exhibited high crystallinity in the 2H semiconducting phase. Thus, the proposed method can be applied to the exfoliation of other transition metal dichalcogenides using suitable chemical intercalants. It can also be used with highperformance WS2-based photodiodes and transistors used in practical semiconductor applications.
Designing and producing a low-cost, high-current-density electrode with good electrocatalytic activity for the oxygen evolution reaction (OER) is still a major challenge for the industrial hydrogen energy economy. In this study, nanostructured Fe-doped CuCo(OH)2 was discovered to be a precedent electrocatalyst for OER with low overpotential, low Tafel slope, good durability, and high electrochemically active surface sites at reduced mass loadings. Fe-doped CuCo(OH)2 nanosheets are made using a hydrothermal synthesis process. These nanosheets are clumped together to form a highly open hierarchical structure. When used as an electrocatalyst, the Fe-doped CuCo(OH)2 nanosheets required an overpotential of 260 mV to reach a current density of 50 mA cm−2. Also, it showed a small Tafel slope of 72.9 mV dec−1, and superior stability while catalyzing the generation of O2 continuously for 20 hours. The Fe-doped CuCo(OH)2 was found to have a large number of active sites which provide hierarchical and stable transfer routes for both electrolyte ions and electrons, resulting in exceptional OER performance.
Water electrolysis is a representative technology for tritium enrichment in water. Proton exchange membrane (PEM) water electrolysis has received great attention to replace traditional alkaline water electrolysis which generates concentrated tritiated water containing a large amount of salts. Nafion has been widely used as a polymeric electrolyte for the PEM electrolyzer. However, its low gas barrier property causes explosion, corrosion or degradation of electrolyzer. Furthermore, the traditional polymeric electrolytes have negligible differences in conductivity between hydrogen isotopes. To enhance the tritium separation by water electrolysis, we designed a composite membrane (Nafion/ hexagonal boron nitride (hBN)). The monolayer hBN has a high proton conductivity and gas barrier property, and the hBN can enhance conductivity differences between hydrogen isotopes. We prepared Nafion/hBN composite membranes, and water electrolysis performances and proton/deuterium separation behaviors were investigated.
Cerium oxide decorated on nickel hydroxide anchored on reduced graphene oxide (Ce-Ni(OH)2/rGO) composite with hexagonal structures were synthesized by facile hydrothermal method. Fourier transform infrared spectroscopy (FT-IR), highresolution transmission electron microscopy with selected area diffraction (HRTEM-SAED), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Brunauer– Emmett–Teller (BET) surface area analysis and electrochemical technology were used to characterize the composite. Due to its unique two-dimensional structures and synergistic effect among Ce2O3, Ni(OH)2 and rGO components indicated twodimensional hexagonal nano Ce-Ni(OH)2/rGO composite is promising electrode material for improved electrochemical H2O2 sensing application. From 50 to 800 μM, the H2O2 concentration was linearly proportional to the oxidation current, with a lower detection of limit of 10.5 μM (S/N = 3). The sensor has a higher sensitivity of 0.625 μA μM−1 cm− 2. In addition, the sensor demonstrated high selectivity, repeatability and stability. These findings proved the viability of the synthetic method and the potential of the composites as a H2O2 sensing option.
ZnO nanosheets have been used for many devices and antibacterial materials with wide bandgap and high crystallinity. Among the many methods for synthesizing ZnO nanostructures, we report the synthesis of ZnO/Zn(OH)2 nanosheets using the ionic layer epitaxy method, which is a newly-developed bottom-up technique that allows the shape and thickness of ZnO/Zn(OH)2 nanosheets to be controlled by temperature and time of synthesis. Results were analyzed by scanning electron microscopy and atomic force microscopy. The physical and chemical information and structural characteristics of ZnO/ Zn(OH)2 nanosheets were compared by X-ray photoelectron spectroscopy and X-ray diffraction patterns after various posttreatment processes. The crystallinity of the ZnO/Zn(OH)2 nanosheets was confirmed using scanning transmission electron microscopy. This study presents details of the control of the size and thickness of synthesized ZnO/Zn(OH)2 nanosheets with atomic layers.
Despite having a low electrical conductivity, graphene oxide (GO) is used as an anode material in lithium-ion batteries (LIBs) owing its good processability in large quantities. GO is reduced by chemical or thermal treatments to enhance its electrical conductivity. In this study, high-performance GO anodes with polydopamine (PDA) and polyethylenimine (PEI) as binders were fabricated. Gamma (γ)-ray irradiation was applied to the GO–PDA–PEI hybrid sheets to covalently cross-link the GO sheets and binders with an amide bond. The covalent crosslinking was confirmed by Fourier-transform infrared spectroscopy analysis. Further, X-ray photoelectron spectroscopy results showed that γ-ray irradiation produced a reduced GO sheet, which resulted in an increase in the electrical conductivity by 30%. By characterizing the electrochemical properties, we found that the γ-ray irradiation facilitates the stability and increases the charge/discharge capacity by crosslinking GO and PDA–PEI binders and reducing the GO sheets.
Morphology control of a graphene nanosheet (GNS) is important for graphene-based battery electrodes to exhibit the increased practical surface area and the enhanced ion diffusion into the nanosheets. Nevertheless, it is very difficult to minutely control the shape of graphene nanosheets based on the conventional GNS suspension methods. In this work, we fabricated wrinkle textures of free-standing GNS for large area using Langmuir–Schaefer technique. The wrinkles are oriented vertically to the direction of the monolayer compression. The textured structure of GNS was obtained by cross-deposition of each layer with controlling the orientation of the wrinkle direction. These wrinkles can cause Li-ion to diffuse into the voids created by them and raise the specific surface area between the GNSs. Consequently, as a prospective anode for Li-ion battery, the wrinkled GNS multilayer, exhibits the high specific capacity of ~ 740 mAh g− 1 at 100 mA g−1 and the great power capability with ~ 404 mAh g− 1 being delivered even at 2 A g− 1. Furthermore, outstanding cycle performance of the wrinkled GNS multilayer is achieved over 200 cycles at 300 mA g−1 with high Coulombic efficiency of ~ 96%.
We report the growth and enhanced photoelectrochemcial (PEC) water-splitting reactivity of few-layer MoS2 nanosheets on TiO2 nanowires. TiO2 nanowires with lengths of ~1.5 ~ 2.0 μm and widths of ~50~300 nm are synthesized on fluorine-doped tin oxide substrates at 180 oC using hydrothermal methods with Ti(C4H9O)4. Few-layer MoS2 nanosheets with heights of ~250 ~ 300 nm are vertically grown on TiO2 nanowires at a moderate growth temperature of 300 oC using metalorganic chemical vapor deposition. The MoS2 nanosheets on TiO2 nanowires exhibit typical Raman and ultraviolet-visible light absorption spectra corresponding to few-layer thick MoS2. The PEC performance of the MoS2 nanosheet/TiO2 nanowire heterostructure is superior to that of bare TiO2 nanowires. MoS2/TiO2 heterostructure shows three times higher photocurrent than that of bare TiO2 nanowires at 0.6 V. The enhanced PEC photocurrent is attributed to improved light absorption of MoS2 nanosheets and efficient charge separation through the heterojunction. The photoelectrode of the MoS2/TiO2 heterostructure is stably sustained during on-off switching PEC cycle.