신선편의 샐러드와 유기농 채소에 오염되어 있는 식중독균인 B. cereus, S. aureus 그리고 E. coli를 대상으로 살균 소독제와 유기산에 대한 감수성을 평가하여 신선편의 식품의 미생물학적 안전성의 확보를 위한 올바른 세척제와 사용량을 제시하고자 하였다.
S. aureus는 2% acetic acid, malic acid, tartaric acid와 1% CaO에 대하여 고농도의 염소계, 과산화수소계 보다 높은 살균 효과를 보였고 E. coli의 경우에는 1% acetic acid 와 CaO처리에 의해 80%의 분리주가 감소하여 50%에탄올과 400 ppm 차아염소산나트륨과 대등한 감소율을 보였다. B. cereus 분리주에 대한 1% CaO, 0.5% acetic acid, 2% malic acid와 tartaric acid 처리는 200 ppm의 차아염소산나트륨보다 높은 감소율을 나타내었고, 1%의 과산화수소와 대등한 감소율을 나타내었다. 본 연구에 따라 천연 물질 유래 살균 소독제인 CaO와 유기산은 기존의 화학적 살균제를 대체할 수 있는 천연 살균 소독제로 활용 될 수 있을 것이고 특히 환경 친화적이고 안전한 유기산은 고품질의 신선편의 채소를 안전성으로 공급하는데 효과적인 것으로 판단되었다.
The present study was investigated the effect of recycled coir organic substrates on the growth of different vegetable crops. The recycled coir had better physical and chemical properties than the new coir. The growth of tomato plant was better on the coir substrate that had been used for 2 years than that on the new coir substrate. The average number of tomato fruits was 108 on the new coir substrate, while it was 179 and 165 on the coir substrate used for 1 and 2 years, respectively. The growth of cherry tomato plant was also better on the coir substrate used for 2 years than that on the new coir substrate. The average number of cherry tomato fruits was 43 on the new coir substrate, while it was 206 and 164 on the coir substrate used for 1 and 2 years, respectively. The growth of brussel sprout was better on the coir substrate used for 3 years than that on the new coir substrate and the average number of brussel sprout leaves was 26.8 on the new coir substrate, while it was 34.3 on the coir substrate used for 3 years. The growth of Korean cabbage improved on the coir substrate used for 1 years compared to the new coir substrate and the number of leaves was 15.1 on the new coir substrate, while it was 24.3 on the coir substrate used for 1 year. Thus, used coir can be recycled to improve vegetable yields compared to using new coirs.
This study was conducted to determine the effects of organic vegetable cultivation on the soil physical properties in 33 farmlands under plastic greenhouse in Korea. We were investigated 5~8 farms per organic vegetable crops during the period from August to November 2014. The main cultivated vegetables were leafy lettuce (Lactuca sativa L.), Perilla leaves (Perilla frutescens var. Japonica Hara), cucumber (Cucumis sativus L.), strawberry (Fragaria ananassa L.) and tomato (Lycopersicon spp.). We have analyzed soil physical properties. The measured soil physical parameters were soil plough layer, soil hardness, penetration resistance, three soil phase, bulk density and Porosity. The measurement of the soil plough layer, soil hardness and penetration resistance were carried out direct in the fields, and the samples for other parameters were taken using the soil core method with approximately 20 mm diameter core collected from each organic vegetable field. Soil plough layer was average 36 cm and ranged between 30 and 50 cm, and slightly different depending on the sorts of vegetable cultivation. The soil hardness was 0.17±0.15~1.34±1.02 in the topsoil, 0.55±0.34~1.15±0.62 in the subsoil. It was not different between topsoil and subsoil, but showed a statistically significant difference between the leafy and fruit vegetables. Penetrometer resistance is one of the important soil physical properties that can determine both root elongation and yield. The increase in density under leafy vegetables resulted in a higher soil penetrometer resistance. Soil is a three-component system comprised of solid, liquid, and gas phases distributed in a complex geometry that creates large solidliquid, liquid-gas, and gas-solid interfacial areas. The three soil phases were dynamicand typically changed in organic vegetable soils under greenhouse. Porosity was characterized as range of 54.2±2.2~60.3±2.4%. Most measured soils have bulk densities between 1.0 and 1.6 g cm-3. To summarize the above results, Soil plough layer has been deepened in organic vegetable cultivation soils. Solid hardness (the hardness of the soil) and bulk density (suitable for the soil unit mass) have been lowered. Porosity (soil spatial content) was high such as a well known in organic farmlands. Important changes were observed in the physical properties according to the different vegetable cultivation. We have demonstrated that the physical properties of organic cultivated soils under plastic greenhouse were improved in the results of this study.
종자가 수분을 흡수할 때 특히 퇴화종자에서 종자의 내용물질을 밖으로 누출하는데 Brassica속의 종자는 총광물질인 sinapine이 누출되는 것을 이용하여 퇴화종자를 선별하는 기술이 개발되어 있다. 따라서 본 시험에서는 무, 배추, broccoli, 참깨, 양파, 당근종자에서 sinapine이외에 전기전도도, 무기성분(K, Ca, Mg, Na), 전당, 아미노산 등의 성분들이 퇴화종자와 건전종자 사이에 어떠한 차이로 누출되는지를 검토하여 이들 성분을 이용할 때 퇴화종자를 검정할 수 있는 지표로 사용될 수 있는지를 검토하였다. 1. 종자침청호액의 전기전도도는 퇴화종자에서 시간이 경과할수록 높아졌는데 십자화과 종자인 무, 배추, broccoli종자에서 뚜렷한 차이가 있었으나 양파와 당근종자에서는 전기전도도도 낮았고 차이도 거의 없었다. 2. 무기물의 누출에서는 무기성분중 potassium이 가장 많이 누출되었으며 퇴화종자와 건전종자 사이의 차이도 컸지만 기타 Ca, Mg, Na에서는 누출양도 적었고 차이도 적었다. 또 십자화과 종자에서는 누출이 많았고 양파와 당근종자에서는 누출이 적었다. 3. 전당의 누출도 퇴화종자에서 건전종자보다 높았으며 역시 십자화과 종자에서 누출양과 차리가 컸으나 양파, 당근종자에서는 누출양과 차이가 적었다. 4. 아미노산의 누출도 퇴화종자와 건전종자사이에 차이가 컸으나 품종간 차이가 다양하였고 십자화과 종자에서 누출양이 많았으나 양파나 당근종자에서는 누출양이나 차이가 적었다. 5. 전당과 아미노산은 종자침청 후 약 4시간에서부터 건전종자와 퇴화종자에서 누출양의 차이를 보였다.