검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2013.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : Determination of particle packing model variables that can be used for formulation of new DEM based particle packing model by examining existing particle packing models METHODS : Existing particle packing models are thoroughly examined by analytical reformulation and sensitivity analysis in order to set up DEM based new particle packing model and to determine its variables. All model equations considered in this examination are represented with consistent expressions and are compared to each others to find mathematical and conceptual similarity in expressions. RESULTS : From the examination of existing models, it is observed that the models are very similar in their shapes although the derivation of the models may be different. As well, it is observed that variables used in some existing models are comprehensive enough to estimate particle packing but not applicable to DEM simulation. CONCLUSIONS : A set of variables that can be used in DEM based particle packing model is determined.
        4,800원
        2.
        2006.09 구독 인증기관·개인회원 무료
        For precise property control of sintered products, it is important to understand accurately the packing density of the powder. We developed a packing simulation program that could make a packed bed of spherical particles having particle size distribution. In addition, the influence of the particle shape of the actual powder on the packing density was quantitatively analyzed. The predicted packing densities corresponded well to the actual data.
        3.
        2006.04 구독 인증기관·개인회원 무료
        When an alloy such as Ni-W is liquid phase sintered, heavy solid W particles sedimentate to the bottom of the container, provided that their volume fraction is less than a critical value. The sintering process evolves typically in two stages, diffusiondriven macrosegregation sedimentation followed by true sedimentation. During macrosegregation sedimentation, the overall solid volume fraction decreases concurrently with elimination of liquid concentration gradient. However, in the second stage of true sedimentation, the average solid volume fraction in the mushy zone increases with time. It is proposed that the true sedimentation results from particle rearrangement for higher packing efficiency.