Bio-efficacies of two different types of fungicides, Diniconazole and Paclobutrazol with their effects as plant g rowth regulators f or Kimchi Cab bage were e valuated o n February 4 to A pril 13, 2024 in Los Baños, Laguna, Philippines. The experiment was done during the off-season planting of Kimchi Cabbage in the country. Yield and other horticultural characteristics were observed for seven different groups: group 1, untreated control; group 2, recommended rate of granular fertilizer (RR-G); group 3, recommended rate of granular fertilizer plus recommended rate of Diniconazole; group 4, recommended r ate of D iniconazole (alone); g roup 5 , recommended rate o f Paclob utrazol (RR-PBZ), group 6, RR-G plus RR-PBZ; and group 7, RR-G plus ½ RR-PBZ. Results showed that combination of recommended rate of granular fertilizer plus the full recommendation of Paclobutrazol (group 6) resulted in a significantly higher yield of 64.9 tons/ha than other groups with yields ranging from 23.3 to 55.3 tons/ha. Such significantly higher yield in group 6 was also attributed to the number of leaves produced by plants at the time of harvest. Regarding effects of two chemical treatments, the combination of Diniconazole a nd P aclob utrazol a s recommended granular f ertilizers h elped in t he heading of K imchi Cabbage during hot conditions with an average temperature of 32-35°C from March to April at the heading stage plus a f actor of b eing planted a t a lowland area i n the country. T he a dvantage o f Paclobutrazol aside from yield is its availability in the country as compared to Diniconazole (Binnari).
Graphene-based materials modified with transition metals, and their potential utilization as hydrogen storage devices, are extensively studied in the last decades. Despite this widespread interest, a comprehensive understanding of the intricate interplay between graphene-based transition metal systems and H2 molecules remains incomplete. Beyond fundamental H2 adsorption, the activation of H2 molecule, crucial for catalytic reactions and hydrogenation processes, may occur on the transition metal center. In this study, binding modes of H2 molecules on the circumcoronene (CC) decorated with Cr or Fe atoms are investigated using the DFT methods. Side-on (η2-dihydrogen bond), end-on and dissociation modes of H2 binding are explored for high (HS) and low (LS) spin states. Spin state energetics, reaction energies, QTAIM and DOS analysis are considered. Our findings revealed that CC decorated with Cr (CC-Cr) emerges as a promising material for H2 storage, with the capacity to store up to three H2 molecules on a single Cr atom. End-on interaction in HS is preferred for the first two H2 molecules bound to CC-Cr, while the side-on LS is favored for three H2 molecules. In contrast, CC decorated with Fe (CC-Fe) demonstrates the capability to activate H2 through H–H bond cleavage, a process unaffected by the presence of other H2 molecules in the vicinity of the Fe atom, exclusively favoring the HS state. In summary, our study sheds light on the intriguing binding and activation properties of H2 molecules on graphene-based transition metal systems, offering valuable insights into their potential applications in hydrogen storage and catalysis.
Single-walled carbon nanotubes (SWNT) have a strong and stable near-infrared (nIR) fluorescence that can be used to selectively detect target analytes, even at the single molecule level, through changes in either their fluorescence intensity or emission peak wavelength. SWNTs have been employed as NIR optical sensors for detecting a variety of analytes. However, high costs, long fabrication times, and poor distributions limit the current methods for immobilizing SWNT sensors on solid substrates. Recently, our group reported a protocol for SWNT immobilization with high fluorescence yield, longevity, fluorescence distribution, and sensor response, unfortunately this process takes 5 days to complete. Herein we report an improved method to immobilize SWNT sensors that only takes 2 days and results in higher fluorescence intensity while maintaining a high level of SWNT distribution. We performed surface morphology and chemical composition tests on the original and new synthesis methods and compared the sensor response rates. The development of this new method of attaching SWNT sensors to a platform allows for creation of a sensing system in just 2 days without sacrificing the advantageous characteristics of the original, 5-day platforms.
ㅊThis study aims to analyze fashion design cases using traditional elements based on the research and analysis of traditional folk cultural paper-cutting crafts in China, and to expand the area of fashion design using traditional elements by developing 3D digital fashion design. For herein, the techniques and characteristics of Chinese paper-cutting crafts were investigated. This survey facilitated an analysis of the formative characteristics of battery crafts in contemporary fashion design. As for the analysis case, the case of using battery crafts expressed in modern fashion for 10 years from 2010 to 2024 S/S was selected. The results are as follows. First, the typical characteristics of Chinese paper cutting technology—relief, micro-carved, combined with relief and micro-carved expressive techniques of engraving art effect— can be explored by analyzing contemporary fashion case collections through the perspective and trend of leading traditional culture. Second, in the traditional paper cutting process, most paper-cutting works are expressed in red, but white and black are mainly used in fashion, in addition to the active use of the five colors. Third, the characteristics of contemporary fashion patterns primarily utilize the paper-cutting process, incorporating elements such as plants, animals, and geometric patterns. Fourth, the utilization of paper cutting in 3D digital design offers time and economic benefits, allowing for quick adjustments to various design developments. In contemporary fashion, it is expected that the use of paper cutting can provide useful creativity and value for the inheritance and modernization of traditional culture.
Meristem culture (MC) is a technique for producing virus-free garlic plants with high vigor and productivity. We assessed the changes in the agronomic traits of “Namdo” garlic over several generations after the cultivation of MC-induced bulbils. We examined the plant height, leaf sheath length and diameter, leaf number, bulb weight and diameter, clove number, and bulb size distribution. Compared with that of the control, bulb weights of the first-generation bulbils cultivated for three and two years and the second-generation bulbils cultivated for one year increased by 8.7–27.2, 13.9–30.4, and 36.6–46.9%, respectively. In three and two-year cultivation of the firstgeneration bulbils and one-year cultivation of the second-generation bulbils, the proportions of extra-large-sized bulb weight in meristem-cultured plants were 16.2–38.6, 24.0–35.8, and 27.1–51.1%, respectively, whereas that of the control was 7.6%. Thus, the first-generation bulbils can be cultivated for three years to renew the seed bulbs while maintaining productivity.
The deployment of drones for targeted killings in recent years has sparked intense debates regarding the ethical and legal implications of their deployment in contemporary conflicts. Through an examination of the complexities surrounding the application of fundamental international humanitarian law (IHL) principles - such as differentiating targets and ensuring a proportionate response – and their deployment, the article aims to illuminate the potential legal ramifications of using drones in targeted killing. It also highlights challenges arising from the ambiguous distinction between combatants and non-combatants, compounded by the remote nature of drone missions. The inclusion of a few relevant case studies enhances the analysis, providing practical insights into the nuanced legal landscape and emphasising the pressing need for a comprehensive legal framework tailored to regulate drone usage. This paper stresses the immediate requirement for an effective regulatory structure to ensure adherence to IHL, thereby upholding humanistic principles and reducing the human toll of conflicts.
Vespa mandarinia (Vespidae: Hymenoptera) is one of the two largest true hornets known to science. The species is a noted predator of social Hymenoptera and a significant pest of managed honey bees in its native range, but is also known to feed on a wide variety of other species when available. Most of the prey records for V. mandarinia are derived from visual observations in Japan, with sparse observations from other parts of its native range. A population of V. mandarinia was detected in North America in 2019 and five nests were removed between 2019 and 2021. We extracted DNA from larval meconia from four nests collected in Washington State, USA, and amplified the CO1 region to determine the potential prey base. We compared these with sequences generated from three nests in the Republic of Korea, and with prey pellets collected from foraging hornets at several locations in Korea. Results indicate that the prey base was much wider in the ROK than the USA, although social Hymenoptera were the most abundant and common prey items in both regions. Prey range seems to be bound by an intersection of organism size and local biodiversity, with little evidence to suggest that the latter is a limiting factor in colony success.