본 연구에서는 용매로 침액되었을 시 전반적으로 더 균일한 상전이법 기반 평막 제조 시 주로 사용되는 부직포 지지체의 영향을 분석하였다. 도프용액의 점도가 낮을 경우 용액이 부직포층으로 쉽게 침투하여 불균일한 막이 형성되는 것 을 확인하였으며, 이를 방지하기 위해 부직포층을 유기용매로 침액하는 기법을 도입하였다. 부직포층이 유기 분리막이 생성 되는 것을 확인하였으며, 수투과 및 용매투과율도 향상하는 것을 알 수 있었다. 부직포 침액의 영향은 낮은 점도에서 확연하 게 나타났으며, 고분자용액의 점도가 높은 경우 침액 여부에 관계없이 동일한 성능을 얻을 수 있었다.
다공성 분리막은 입자성 물질을 제거하는데 산업적으로 다양하게 응용되고 있다. 기존 다공성 분리막 제작 방법 과 다르게, 용액퍼짐 상분리법은 매우 간단하게 기공을 형성할 수 있다. 먼저 지지층으로 메쉬 위에 물을 적신 후, 물과 혼합 되지 않은 용매에 폴리설폰 용액을 흘려준다. 이때 물과 혼합되지 않은 용매는 쉽게 기화되어 폴리설폰은 얇은 막으로 만들어지게 된다. 기공을 형성하기 위해 폴리설폰 용액에 물과 혼합할 수 있는 물질을 넣게 되면, 넣어주는 농도 비율에 따라 기공크기를 조절할 수 있게 된다. 막의 두께는 쉽게 용액의 농도로 조절이 된다. 다공성 분리막은 메쉬의 형성을 그대로 유지하고 있어 3차원 구조체를 형성하는데 매우 유용하다. 본 연구에서 제시된 용액 퍼짐 상분리법은 매우 낮은 생산단가와 쉬운 공정조절에 의해 기존 분리막에 비해 높은 가격경쟁력을 가질 수 있는 특징을 보이고 있다.
본 연구에서는 상전이법을 이용하여 P(VDF-co-HFP) 분리막의 구조를 조절하였다.
Macrovoid 없는 구조를 얻기 위하여 다양한 조건에서 비용매유도상전이(NIPS) 공법으로 분리막을 제막하였으나 고분자의 낮은 결정화 속도로 인해 macrovoid가 생성된다는 것을 관측하였다. 이를 극복하기 위해 증발유도상전이법(EIPS)과 증기유도상전이법(VIPS)을 도입하였으며 NIPS공법과 함께 제막되었을 때 이상적인 구조를 얻을 수 있다는 것을 확인하였다.
본 연구에서는 상전이법을 이용하여 P(VDF-co-HFP) 분리막의 구조를 조절하였다. Macrovoid 없는 구조를 얻기 위하여 다양한 조건에서 비용매유도상전이(NIPS) 공법으로 분리막을 제막하였으나 고분자의 낮은 결정화 속도로 인해 macrovoid가 생성된다는 것을 관측하였다. 이를 극복하기 위해 증발유도상전이법(EIPS)과 증기유도상전이법(VIPS)을 도입하였으 며 NIPS공법과 함께 제막되었을 때 이상적인 구조를 얻을 수 있다는 것을 확인하였다.
In membrane applications for wastewater treatment, polymeric membranes are dominant due to their processbility and low cost. To enlarge the membrane application in industrial effluent treatment, membrane materials with high mechanical and chemical tolerance should be needed. Although ceramics such as alumina would be good options for harsh environmental conditions, high cost and complex production methods hinder the application of ceramic membranes. Here, we demonstrate the preparation of cost-effective, robust alumina hollow fiber membranes (HFMs). Alumina HFMs prepared with phase inversion method followed by sintering showed narrow pore size distribution. Also, characteristics of the membrane can be easily tuned by controlling spinning and post treatment conditions.
Candelilla wax-in-water nanoemulsions stabilized by Span 80/Tween 80 were prepared by the phase inversion composition (PIC) method. Stable nanoemulsions with droplet diameters below 50 nm could be formed when the hydrophilic–lipophilic balance (HLB) values were between 13.5 and 14.5, surfactant concentration was 5.0 wt%, and the surfactant-wax ratio was 1:1. Increased emulsification temperature and cooling rate were found to improve the emulsion properties. Process of PIC (adding aqueous phase to the wax phase) produced smaller droplet size nanoemulsion compared to the process of adding wax phase to the aqueous phase. The stability of these nanoemulsions was assessed by following the change in droplet diameters with time of storage at room temperature (∼25 °C). The size remained constant during 2 months storage time.
본 연구에서는 고투과성을 가지는 기체분리막 제조를 위해 6FDA와 APAF를 이용하여 하이드록시 폴리이미드를 합성하였다. H-NMR과 FT-IR 분석을 통해서 HPI의 합성여부를 확인하였으며 열적특성을 알아보기 위해 Differential scanning calorimetry (DSC)와 thermogravimetric analyzer (TGA)를 측정하였다. 특히 합성된 HPI는 약 450℃에서 polybenzoxazole (PBO)로 변환이 됨을 확인 가능하였다. 고투과성 고분자 분리막의 제조를 위해 고분자, 용매 그리고 비용매-첨가제를 포함하는 3성분계의 시스템을 도입하였으며, 상전이법을 이용하여 HPI 비대칭 평막을 제조하였다. 최종적으로 각성분들에 따른 모폴로지 변화를 전계방출주사현미경(FE-SEM)을 통해 확인할 수 있었다.
상변환과 졸-겔 반응을 동시에 행하는 새로운 제막법으로 나노크기의 ZrO2 입자가 함유된 비대칭형 PES-ZrO2 복합 막을 제조하였다. PES-ZrO2 복합 막 제조의 최적 제막 조건을 복합 막에의 인 흡착실험을 수행하여 인 흡착량이 최대가 되는 조건으로서 결정하였는바, 최적 제막 조건은 캐스팅 용액에 1 mL의 PES 당 0.15 mL의 Zr(PrO)4 첨가 및 비용매 1 L에 1 mL Zr(PrO)4 당 30 mL의 HNO3 촉매를 첨가했을 때 이었다. 복합 막의 단면 구조, 막성능 및 ZrO2 입자 함유량 변화를 SEM, 순수투과량, TGA, ICP, XRD 및 접촉각 측정을 통해 결정하였는바, 캐스팅 용액에의 Zr(PrO)4 첨가량이 증가할수록 순수 투과량이 증가하며, ZrO2 입자 함유량은 1 mL의 PES 당 0.15 mL의 Zr(PrO)4 첨가했을 때 최대가 되었다. 복합 막의 표면 특성을 친수성으로 개선하기 위하여 인산처리를 하였으며, 인산처리 전후(前後)의 두 종류 PES-ZrO2 복합 막을 대상으로 한 BSA 용액의 dead-end 한외여과 실험을 수행하여 막오염 형성의 억제 정도를 평가한 결과 인산처리 시킨 복합 막의 경우 투과량과 BSA 배제도 모두 약 40% 정도 증가하였는데 이는 복합 막을 인산처리 시킴으로서 막특성이 친수화 되었기 때문이다.
물/Span 80-Tween 80/긴 사슬 파라핀 오일 계에서 PIC (조성 상전이) 방법을 이용하여 O/W 나노에멀젼을 제조하였다. 제조 온도를 30 ℃에서 80 ℃로 상승시킴에 따라 제조된 나노에멀젼의 입경은 120 nm에서 40 nm로 감소하여 나노에멀젼을 형성하였다. 혼합 계면활성제의 HLB를 변화시킴에 따라 12.0 ~ 13.0 부근에서 가장 작은 입경을 형성하는 최적 HLB가 존재하였다. 나노에멀젼의 점도는 액적의 부피 분율(ϕ)에 따라 현격하게 증가하였으나, 입경의 크기는 약간 증가하였다. 그리고, ϕ ≤ 0.3 조건에서 나노에멀젼의 크기 분포는 2 개월 이상 일정하게 유지 되었다. 이러한 결과는 점성 파라핀 오일의 경우 30 ℃에서는 PIC 방식으로 거의 분산 할 수 없음을 보여주지만, 제조 온도가 증가할 경우 단 분산 나노에멀젼의 제조가 가능하다는 것을 보여준다. 나노에멀젼이 생성되면, Ostwald ripening에 대한 안정성은 연속 상에서 액상 파라핀 오일의 매우 낮은 용해도로 인해 안정하게 되며, 이는 화장품 응용에서 매우 중요하다.