검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 6

        1.
        2020.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this work, Ag3PO4/In2S3 nanocomposites with low loading of In2S3 (5-15 wt %) are fabricated by two step chemical precipitation approach. The microstructure, composition and improved photoelectrochemical properties of the asprepared composites are studied by X-ray diffraction pattern (XRD), field emission scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), photocurrent density, EIS and amperometric i-t curve analysis. It is found that most of In2S3 nanoparticles are deposited on the surfaces of Ag3PO4. The as-prepared Ag3PO4/ In2S3 composite (10 wt%) is selected and investigated by SEM and TEM, which exhibits special morphology consisting of lager size substrate (Ag3PO4), particles and some nanosheets (In2S3). The introduction of In2S3 is effective at improving the charge separation and transfer efficiency of Ag3PO4/In2S3, resulting in an enhancement of photoelectric behavior. The origin of the enhanced photoelectrochemical activity of the In2S3-modified Ag3PO4 may be due to the improved charge separation, photocurrent stability and oriented electrons transport pathways in environment and energy applications.
        4,000원
        2.
        2019.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We report on the fabrication and characterization of an oxide photoanode with a zinc oxide (ZnO) nanorod array embedded in cuprous oxide (Cu2O) thin film, namely a ZnO/Cu2O oxide p-n heterostructure photoanode, for enhanced efficiency of visible light driven photoelectrochemical (PEC) water splitting. A vertically oriented n-type ZnO nanorod array is first prepared on an indium-tin-oxide-coated glass substrate via a seed-mediated hydrothermal synthesis method and then a p-type Cu2O thin film is directly electrodeposited onto the vertically oriented ZnO nanorod array to form an oxide p-n heterostructure. The introduction of Cu2O layer produces a noticeable enhancement in the visible light absorption. From the observed PEC current density versus voltage (J-V) behavior under visible light illumination, the photoconversion efficiency of this ZnO/Cu2O p-n heterostructure photoanode is found to reach 0.39 %, which is seven times that of a pristine ZnO nanorod photoanode. In particular, a significant PEC performance is observed even at an applied bias of 0 V vs Hg/Hg2Cl2, which makes the device self-powered. The observed improvement in the PEC performance is attributed to some synergistic effect of the pn bilayer heterostructure on the formation of a built-in potential including the light absorption and separation processes of photoinduced charge carriers, which provides a new avenue for preparing efficient photoanodes for PEC water splitting.
        4,000원
        3.
        2018.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We report on the fabrication and photoelectrochemical(PEC) properties of a Cu2O thin film/ZnO nanorod array oxide p-n heterojunction structure with ZnO nanorods embedded in Cu2O thin film as an efficient photoelectrode for solardriven water splitting. A vertically oriented n-type ZnO nanorod array was first prepared on an indium-tin-oxide-coated glass substrate via a seed-mediated hydrothermal synthesis method and then a p-type Cu2O thin film was directly electrodeposited onto the vertically oriented ZnO nanorods array to form an oxide semiconductor heterostructure. The crystalline phases and morphologies of the heterojunction materials were characterized using X-ray diffraction and scanning electron microscopy as well as Raman scattering. The PEC properties of the fabricated Cu2O/ZnO p-n heterojunction photoelectrode were evaluated by photocurrent conversion efficiency measurements under white light illumination. From the observed PEC current density versus voltage (J-V) behavior, the Cu2O/ZnO photoelectrode was found to exhibit a negligible dark current and high photocurrent density, e.g., 0.77 mA/cm2 at 0.5 V vs Hg/HgCl2 in a 1 mM Na2SO4 electrolyte, revealing an effective operation of the oxide heterostructure. In particular, a significant PEC performance was observed even at an applied bias of 0 V vs Hg/ HgCl2, which made the device self-powered. The observed PEC performance was attributed to some synergistic effect of the p-n bilayer heterostructure on the formation of a built-in potential, including the light absorption and separation processes of photoinduced charge carriers.
        4,000원
        4.
        2016.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We report on the fabrication and characterization of a novel Cu2O/CuO heterojunction structure with CuO nanorods embedded in Cu2O thin film as an efficient photocathode for photoelectrochemical (PEC) solar water splitting. A CuO nanorod array was first prepared on an indium-tin-oxide-coated glass substrate via a seed-mediated hydrothermal synthesis method; then, a Cu2O thin film was electrodeposited onto the CuO nanorod array to form an oxide semiconductor heterostructure. The crystalline phases and morphologies of the heterojunction materials were examined using X-ray diffraction and scanning electron microscopy, as well as Raman scattering. The PEC properties of the fabricated Cu2O/CuO heterojunction photocathode were evaluated by photocurrent conversion efficiency measurements under white light illumination. From the observed PEC current density versus voltage (J-V) behavior, the Cu2O/CuO photocathode was found to exhibit negligible dark current and high photocurrent density, e.g. −1.05 mA/cm2 at −0.6 V vs. Hg/HgCl2 in 1 mM Na2SO4 electrolyte, revealing the effective operation of the oxide heterostructure. The photocurrent conversion efficiency of the Cu2O/CuO photocathode was estimated to be 1.27% at −0.6 V vs. Hg/HgCl2. Moreover, the PEC current density versus time (J-T) profile measured at −0.5 V vs. Hg/HgCl2 on the Cu2O/CuO photocathode indicated a 3-fold increase in the photocurrent density compared to that of a simple Cu2O thin film photocathode. The improved PEC performance was attributed to a certain synergistic effect of the bilayer heterostructure on the light absorption and electron-hole recombination processes.
        4,000원
        5.
        2010.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Self-standing TiO2 nanotube arrays were fabricated by potentiostatic anodic oxidation method using pure Ti foil as a working electrode and ethylene glycol solution as electrolytes with small addition of NH4F and H2O. The influences of anodization temperature and time on the morphology and formation of TiO2 nanotube arrays were investigated. The fabricated TiO2 nanotube arrays were applied as a photoelectrode to dye-sensitized solar cells. Regardless of anodizing temperature and time, the average diameter and wall thickness of TiO2 nanotube show a similar value, whereas the thickness show a different trend with reaction temperature. The thickness of TiO2 nanotube arrays anodized at 20℃ and 30℃ was time-dependent, but on the other hand its at 10℃ are independent of anodization time. The conversion efficiency is low, which is due to a morphology breaking of the TiO2 nanotube arrays in manufacturing process of photoelectrode.
        4,000원