Background: Sperm quality and the number of sperm introduced into the uterus during artificial insemination (AI) are pivotal factors influencing pregnancy outcomes. However, there have been no reports on the relationship between sperm concentration at AI and sperm quality in Hanwoo cattle. In this study, we examined sperm quality and pregnancy rates after AI using sperm inseminated at different concentrations. Methods: We evaluated the motility, viability, and acrosomal membrane integrity of sperm at different concentrations (10, 15, 18, and 20 million sperm/straw) in 0.5-mL straws. Subsequently, we compared the pregnancy rates after AI with different sperm concentrations. Results: After freeze-thawing, sperm at the assessed concentrations showed similar viability and acrosomal membrane integrity. After AI, cattle in the 10 million group had significantly lower pregnancy rates compared to those in the 18 and 20 million groups. Conversely, there were no statistically significant variances observed between cattle in the 10 and 15 million groups. Conclusions: Sperm at concentrations of 10, 15, 18 and 20 million per straw exhibited comparable motility, viability, and acrosomal membrane integrity. However, a concentration of at least 18 million sperm per straw is required to achieve a consistent rate of pregnancy rate in Hanwoo cattle after AI.
In this study the effect of vitamin C administration on pregnancy rates during summer heat stress in dairy cows was examined. A total of 80 Holstein-Friesian cows were divided into control and treatment groups (n = 40 each). Control group animals were given 10 mL isotonic normal saline, and treatment group, Vitamin C (4 mg/kg) on artificial insemination day (day 0) and 4th, 8th and 12th day post insemination. Pregnancy diagnosis was performed on 30th day post insemination by ultrasonography. Blood samples were randomly taken from 11 animals from each group. Serum P4, GSH, MDA and plasma 8-OHdG levels were determined by using ELISA method. Results showed that 8-OHdG levels were lower in treatment group on day 4, 8 and 12 (p < 0.05) compared with the control group. Similarly, pregnancy rate was higher in treatment group (32.5%) than control (22.5%), respectively. However, MDA, P4 and GSH levels were similar in both groups at 4th, 8th and 12th day. A gradual increase in P4, and MDA levels, and a strong positive correlation between 0, 4th (r = 0.54), 4, 8th (r = 0.59) and 8, 12th (r = 0.51) day was found. Similarly, GSH levels also showed positive correlation at days 0, 4th (r = 0.47) and 4, 8th (r = 0.56). However, a strong negative correlation (r = -0.56) between MDA day 0, and GSH day 8 was found. In conclusion, vitamin C application during insemination period in postpartum cows increases pregnancy rate, and reduces oxidative stress metabolite 8-OHdG levels.
In the present study, we examined if deep uterine artificial insemination (DUAI) can improve the pregnancy rate of artificial insemination (AI) using epididymal spermatozoa (ES) in Hanwoo cattle. The estrus cycles of 88 Hanwoo cows were synchronized, and 17 cows were artificially inseminated using the DUAI method with ES, 20 cows were artificially inseminated via the uterine body (BUAI) method with ES, and as a control, 51 cows were inseminated by using the BUAI method with ejaculated spermatozoa from 1 proven bull after frozen thawing. The pregnancy rate of the DUAI method (58.8%) was higher than that of the BUAI method (25.0%, p = 0.0498). The motility of ES was examined immediately after thawing and after 3 and 6 h of incubation. The rapid progressive sperm motility of the control group was significantly higher than that of the ES group immediately after thawing and after 3 and 6 h of incubation (p < 0.05). The straight line velocity and average path velocity of the ES group after 6 h of incubation were significantly lower than those in the control group (p < 0.05). The linearity and amplitude of lateral head of ES were lower than those at 6 h (p < 0.05). The flagellar beat cross frequency and hyperactivation of ES were lower than the control spermatozoa immediately after thawing and at 3 h (p < 0.05). These motility parameters suggested that ES had a low motility and fertilization ability compared to the control spermatozoa. After frozen-thawing and 3 h of incubation, the percentage of live spermatozoa with intact acrosomes in the ES was significantly lower than that in ejaculated spermatozoa (p < 0.05). Our findings suggested that the DUAI method can overcome the low pregnancy rate of ES, despite the low motility, viability, and fertilization ability of ES.
The objective of this research work was to know ovarian dynamics and pregnancy rate of cyclic Murrah buffalo cows with induced estrus by administration of prostaglandin F2α (PGF2α) and timed artificial insemination (TAI) with frozen thawed semen. A total of 31 female buffaloes were selected for the study. The buffalos having matured CL observed by ultrasonography were given one intra muscular injection of cloprostenol 500 μg and TAI was performed using frozen thawed semen of Indian Murrah buffalo bull. Results showed that 90.32% (significantly, at p < 0.05) cows explore the sign of heat after injection of PG and 67.85% (significantly, at p < 0.05) cows were become pregnant out of 28 inseminated (TAI) cows. In the 28 inseminated (TAI) cows, average number of smaller and larger size of follicles were non-significantly (p > 0.05) higher at day 3 post PG injection, but the medium size of follicles was non-significantly (p > 0.05) higher at PG injection. At day 3 post PG injection the diameter of follicles was significantly (p < 0.05) higher, but the diameter of CL was significantly (p < 0.01) lower compared at PG injection. At PG injection the diameter of largest follicle was non-significantly differences (p > 0.05) in between pregnant and non-pregnant cows. But at day 3 post PG injection it was significantly (p < 0.01) higher in pregnant cows compared to non-pregnant cows. The number of small, medium, and large follicles at PG injection and at day 3 post PG injection were non-significantly (p > 0.05) difference in between pregnant and non-pregnant buffalo cows. Finally, it is concluded that the CL was effectively regresses and induced the sign of heat in buffalo cows and after AI the cows were become pregnant with significant rate. The study will help to the veterinarian and researcher to know the efficacy of PG injection and AI for reproductive efficiency in buffalo cows.
Although some factors, including season, age, type of estrus (natural estrus vs. induced estrus) and semen type (conventional vs. sexed), affect the conception rate following artificial insemination (AI) in dairy cattle, there is little information about the influence of ovarian characteristics, such as preovulatory follicle (PF) location at estrus, on fertility in dairy cattle. In most breeds of cattle the right ovary appears to function more actively than the left and about sixty percent of pregnancies in dairy cattle occur in the right horn of uterus (Reece and Tuner, 1938). Our study aimed to compare conception rates in dairy cattle between PFs that developed in the left ovary and those that developed in the right ovary at estrus.
In this study, we examined the locational effect (left or right ovary) of the preovulatory follicle (PF) on fertility in dairy cattle. In total, 955 artificial inseminations (AI) were analyzed. At AI, PF locations were examined using rectal palpation, and dairy cattle were divided into two groups on their PF locations: (i) the PF located in the left ovary (L-PF); and (ii) the PF located in the right ovary (R-PF). Pregnancy was diagnosed by rectal palpation or ultrasonographic examination 60 days after AI. The conception rate was 38.1% in all dairy cattle. Conception rate was higher in the R-PF (40.8%) than in the L-PF (33.2%).
In summary, PF development in the right ovary was associated with increased conception rates in dairy cattle.
The artificial insemination (AI) is one of the best assisted reproductive technologies for increasing reproductive capacity and facilitating the genetic improvement in farm animals. AI has been used in Uganda for over 60 years, but a small population of the total herd has been used. This study was conducted to investigate the efficacy of AI with estrus synchronization technique and to propose ways of improving the productivity of dairy farms through AI services in Uganda. In total, 78 cows from 11 dairy farms were selected for timed-AI. Synchronization was performed according to the ovsynch programs followed by AI using frozen semen from Korean Holstein (0.5 ml straws). Pregnancy rate was varying among farms (0-50%) and the overall pregnancy rate was 28.2%. Cows in luteal phase at the time of treatment was 40.0% whereas that in follicular phase was 20.8%. After treatment, cows that showed normal estrus signal were 45.5% (25/55). Abnormal estrus was categorized into pre-estrus (9.1%), cystic ovaries (21.8%), anestrus (18.2%) and delayed ovulation (5.5%), respectively. These results imply that an assured protocol for timed-AI should be developed to improve the productivity of dairy farms through AI services in Uganda.
This study was carried out to evaluate the influencing factors that affect the reproductive performance of cows at the Monirampur upazila in Jessore district of Bangladesh. A total of 224 cows were brought to the upazila livestock hospital for artificial insemination (AI). The cows were inseminated between 12 to 18 hours from the onset of estrus and data was obtained from the owner. Out of 224 cows, 133 became pregnant and 91 were non pregnant. In this study, the overall pregnancy rate was 59.29%. Among the age variability, the highest pregnancy rate (70.27%) was at the age of 4 years old. In case of breed variation, the highest pregnancy rate was observed in local breed (69.07%) compared with other crossbred cows. Hence the breed variations significantly influence the conception rate of cows. According to the parity, we found that the pregnancy rate was increasing with their parity but decreasing after 4th parity. The highest conception rate was observed in 3rd parity (67.74%) which was significantly higher than that of heifers (Parity-0). Here we also found that the types of bull semen used for AI had no significant effect for pregnancy rate. The skills of AI technician for AI to cows were significantly affecting the pregnancy rate. However, this study is not enough for rating and comment about the reproduction performance of cows. Therefore, further extensive study is needed for rating and recommendation for the cattle up gradation at that particular area.
The purpose of this study is to produce wanted sex progeny of genetically confined White Hanwoo (albinism) with preselected sex sperm. One bull of White Hanwoo was chosen for semen donor and X sperm was sorted by MoFlo XDP cell sorter. To compare the pregnancy and birth rates, KPN straw was used as control, total number of unsorted sperm was 20×106/straw. Sexed X frozen semen with 2×106 cells or 4×106 cells per straw were in seminated twice on Hanwoo heifers. The abnormality of the sexed X semen was 24.9 ± 7.31% and distal reflex abnormality of mid piece was significantly (p<0.05) higher (11.7%) compared with that of KPN 768 (5.6%). There were no differences on the pregnancy and birth rates between 2×106 cells or 4×106 cells of X-sperm but KPN semen showed significant differences (p<0.05). The pregnancy rates of KPN 768, 2×106 cells and 4×106 cells X-sperm of White Hanwoo cattle were 85.0%, 26.3% and 50%. The birth rates were 80.0%, 15.8% and 21.4%, respectively. The female offspring rates of KPN 768, 2×106 cells and 4×106 cells X-sperm of White Hanwoo cattle were 43.8%, 100% and 100% (p<0.05). These results indicated that sex sorted White Hanwoo could be used for the production of wanted progeny with 2×106 cells/straw for AI. To increase the efficiency of calf production, the sperm number of sex sorted semen will be optimized for sex selection of White Hanwoo progeny.
This study was conducted to investigate optimal time of artificial insemination (AI) to Hanwoo female after natural estrus. AI was occurred 12 and 24 hours after natural estrus in both heifer and multiparous recipient then pregnancy and parturition rates were estimated. Results indicated that AI performed at 24 hours after natural estrus showed significant (p<0.05) higher pregnancy rate in both heifer and multiparous recipient groups with significantly (p<0.05) higher abortion rate. However, there are no significant differences of parturition rate, twin birth and sex ratio in both heifer and multiparous recipient groups. Therefore, our results may suggest that performance of AI at 24 hours after natural estrus promise higher pregnancy rate than AI at 12 hours after natural estrus in both heifer and multiparous recipient.
The increase in the meat quality and milk production of cows, which breed Korean Native Cow (KNC) and Holstein cow, is not improving reproductive efficiency. In this study, we examined the effect of interferon (IFN) supplementation on motility of frozen-thawed semen and pregnancy rate after artificial insemination of KNC and Holstein cow. In experiment 1, we investigated the effect of IFN-tau concentration (10,000 IU and 20,000 IU) on the percentage of total motility (TM) and progressive motility (PM) of frozen-thawed spermatozoa. In experiment 2, KNC were infused 20,000 IU IFN-tau at insemination or after insemination. In experiment 3, KNC or Holstein cow were inseminated with frozen-thawed semen and infused 20,000 IU IFN-gamma or -tau after insemination. In experiment 1, the average of TM (23.9% to 30.9%) and PM (18.5% to 21.9%) were similar between control and treatments. In experiment 2, the pregnancy rates of IFN infusing times were not different from 45.8% to 53.6%. In experiment 3, the pregnancy rates of Holstein cow infused different kinds of IFN were similar (control, IFN-gamma, IFN-tau; 42.9%, 40.5%, 48.0%). In the case of KNC, however, the pregnancy rate of control was 55.6%, which was significantly lower than that of IFN-gamma (68.9%; p<0.05). Thus, IFN is effective on the improvement of reproductive efficiency, but further study is needed.
Body condition score (BCS) is a useful management tool for distinguishing differences in nutritional needs of cows in the herd. Although it is not always possible to quantify the nutrient content of the feed supplied to the donor cow, the nutritional status can be determined by the BCS. The objective of this study was to evaluate in vivo embryo production, return to estrous of donor and pregnancy rate of recipients following BCS in Hanwoo superovulation. Sixty nine Hanwoo donor cows were flushed on day 7 of estrus cycle with same FSH and artificial insemination by the same technicians. Embryos were recovered on 7 days after the third insemination by flushing the uterus with Embryo Collection Medium. The results obtained were as follows: No differences were observed in the efficiency of superovulation rates regardless of BCS (≦2.0, 2.5 to 3.0, and ≧3.5). The mean number of total embryos was each 5.20±0.86, 11.56±1.04, and 6.23±1.07. The mean number of transferable embryo from ≦2.0, 2.5 to 3.0, and ≧3.5 of BCS was 2.60±0.87, 7.94±0.89, and 4.75±1.32, respectively (p<0.05). Return to estrous regardless of donor BCS was no difference. The pregnancy rates of recipient were BCS ≦2.0 11.76%, 2.5 to 3.0 40.79%, and ≧3.5 11.11%, following transfer of fresh embryos produced in vivo, respectively. These results indicate that if the Hanwoo with BCS 2.5 to 3.3 are used for donor and recipient, the embryo production and the conception rate will be greater.
The objective of this study was to investigate the comparison of transferable embryos and pregnancy rate between Hanwoo and Chickso. The results obtained were as follows: No differences were observed in the efficiency of superovulation rates on Hanwoo 78%, and Chickso 85%, respectively. The mean number of total embryos are each 14.76± 2.16 and 6.23±1.07. So the mean number of transferable embryos are each 10.94±1.91 and 4.58±1.05. In addition, the mean number of total Hanwoo embryo from <10 and 10≤ of corpora luteum was 0.50±0.50, 11.56±1.92, respectively. In case of Chickso, The mean number of transferable embryo from <10 and 10≤ of CL was 2.75±1.39, 6.00±1.00, respectively. The pregnancy rates were Hanwoo 40%, and Chickso 37% following transfer of fresh embryos produced in vivo. Also, the pregnancy rates of Chickso 60% were significantly greater (p<0.05) than the Hanwoo 42.48% following transfer of following transfer of frozen embryos, respectively. In conclusion, these results suggest that Chickso may be effectively used for transferable embryos production in Hanwoo. Although the transferable embryos number was not enough, it seems the Chickso greatly affect pregnancy rate. The results indicated that the possibility of transferable embryos from Chickso for embryo transfer could be confirmed in this study. Based on the present findings, it was suggested that it is very important to evaluate in vivo embryo production and pregnancy rate of embryo transfer following superovulation for effective Hanwoo and Chickso production.
The purpose of this study was to examine the effect of growing stages of the Korean Native Striped Bull (KNSB) on the freezability and fertility of frozen-thawed semen. First, we investigated the total motility (TM) and progressive motility (PM) according to the diluent used for semen freezing. Second, we examined the effect of the age of KNSB on semen volume, TM and PM of fresh and frozen-thawed semen. Third, we examined the effect of frozen semen from the different age of KNSB on the fertilization rate, and the artificial insemination pregnancy rate. The diluents used in this experiment were Triladyl and Tris-egg yolk extender (EYE). Semen was collected from 5 KNSB in the growing stage (15 months) and 5 adult KNSB (36 months). When Triladyl or Tris-EYE extender was used for semen freezing, there was no difference of the mean TM and the mean PM. However, the mean TM was significantly higher in Bull No. 1885 than Bull No. 4283 ( <0.05). The mean volume of semen collected from the 15-month-old bulls (2.3 ml) was significantly lower ( <0.05) than that from the 36-month-old bulls (5.0 ml). The mean semen concentration was similar for the 15-month-old ( spermatozoa/ml) and 36-month-old ( spermatozoa/ml) bulls. For the 15-month-old and 36-month-old bulls, the mean TM of fresh semen were 93.7% and 88.3%, respectively, and the mean PM were 97.0% and 88.3%, respectively; the 15-month-old bulls showed a particularly high PM ( <0.05). For the 15-month-old and 36-month-old bulls, the mean TM (56.0% and 58.0%, respectively) and the mean PM (64.0% and 70.7%, respectively) of frozen-thawed semen did not differ. The development rates of embryos after fertilization and the pregnancy rate after artificial insemination using frozen-thawed semen did not differ according to the bull's age. In summary, semen volume differed according to the bull's age, but semen concentration and survival rate, the fertilization rate, and the pregnancy rate did not differ according to the stripe bull's age. Accordingly, semen from bulls in the growing stage can be collected and frozen for the preservation and multiplication of rare livestock.
This study was carried out to confirm the effects of luteotrophin, human chorionic gonadotrophin (hCG), and an anti-luteolytic agent, flunixin meglumin (FM), on pregnancy rates in Hanwoo with in vitro produced (IVP) embryo transfers (ET), and to research the effects on the estrus cycle. Treatments included hCG and FM administration 3~10 minutes prior to ET. Also, pregnancy rates were compared with lidocane treatment and FM treatment prior to ET. The results are shown below. 30-day pregnancy rate was 76.7% in the hCG-treated group and 75.7% in the FM-treated group. Both rates were higher than the 70% rate for the control group. 42-day pregnancy rate was 76.7% in the FM-treated group. This was higher than 66.7% recorded for both the hCG-treated and control groups. The pregnancy rate of the hCG-treated group was high at Day 30 (76.7%) but low at Day 40 (66.7%), and there were no differences from the FM-treated and control groups. The recurrent estrus rate of infertile individuals at 2 weeks after ET was 36.4% in the hCG-treated group, under 71.4% in the FM-treated group and 80.0% in the control group. The non-pregnancy rate of individuals without recurrent estrus was 18.2% in the hCG-treated group, which was higher than the 0% rate in both the FM-treated and control groups. The pregnancy rates were higher in the FM-treated group than the Lidocane-treated group with 72.3% versus 67.5% in the heifers and 48.9% versus 43.6% in the cows. From the above results, the FM treatment proved more effective than the hCG treatment and no treatment whatsoever in increasing pregnancy rates after ET. In addition, hCG treatment was shown to be undesirable due to the deviations it caused in the reproductive physiology of the hCG-treated recipients. Therefore, in our study, the FM treatment resulted in a higher pregnancy rate than either lidocaine treatment or no-treatment in the trials of ET.
The objective of this work was to determine the effect of corpus luteum (CL) grade on pregnancy rate after embryo transfer in Korean cattle and we found that CL development was linked to pregnancy rate. The in vivo derived blastocyst-stage embryos were transferred to 15 recipients synchronized in the estrus cycles. Based on size and palpable characteristics, CLs were categorized into three grade. The grade three CL is not to be identified by rectal palpation. The pregnancy rates tended to increase with the increase in CL size of recipients. In grade one, two, and three, the pregnancy rates were 62.5%, 50.0%, and 0%, respectively. This result suggests that pregnancy rates after embryo transfer might be affected by the CL status of recipients.
Research in the area of equine artificial insemination (AI) has led to its increased application in field trials. However, procedures for equine semen collection, cooling and freezing of semen and artificial insemination need further improvement. In experiment 1, we investigated the percentage of total motility (TM) and progressive motility (PM) of sperms at after-collection, cooled-diluted, cooled-transported or frozen-thawed semen. In experiment 2, mares were inseminated with either cooled-diluted, cooled-transported or frozen-thawed semen. In experiment 3, we examined the effect of buffer (skim-milk extender), which was infused into the uterus at the time of AI with frozen-thawed semen. In experiment 4, we compared AI pregnancy rates for mares ovulating spontaneously versus after treatment with hCG. In experiment 1, the average percentage of TM was decreased from 75.3% to 14.4% at the stage of after-collection to frozen-thawed semen (p<0.05). The average percentage of PM was 58.2% and 59.6% at after-collection and cooled-diluted, but it was significantly increased 71.7% after frozen-thawed (p<0.05). In experiment 2, the pregnancy rates after AI using cooled-diluted, cooled-transported and frozen-thawed semen were 60%, 50% and 37.5%, respectively, and similar among treatments. In experiment 3, the pregnancy rate of mares infused with buffer at AI was 40% which was higher than that with no buffer (10%). In experiment 4, the pregnancy rates of mares were similar between ovulated spontaneously (25%) and ovulated with hCG (50%). The results suggest that equine semen that has been cooled-diluted, cooled-transported or frozen can be successfully used to establish AI, pregnancy and foal production. Also, the pregnancy rates after AI can be increased by infusing buffer into the uterus at AI or by inducing ovulation with hCG, but further study is need.
The increase in the total number of cows on farms, which breed Korean Native Cattle (KNC), is associated with many problems. In particular, the services per conception and calving interval have increased. In this study, we examined the effect of dietary supplementation with vitamin and mineral complex on the estrus rate, pregnancy rate, gestation length, and birth weight of KNC calves. Multiparous or primiparous KNC were divided into 3 groups with 40 heads per group. Experimental group 1 was administered a consisting of 35,000 IU vitamin A, 100 IU vitamin E, 200 mg -carotene, 200 mg Zn methionine, and 1.5 mg Se. Experimental group 2 was administered a vitamin complex (100 g/day) consisting of 100 IU vitamin E and 200 mg -carotene. In the case of multiparous KNC, the estrus detection rate in the control group was 90.0% and those in the experimental groups were 75.0% to 95.0%. However, the first-service pregnancy rate after parturition in the control group was 41.2%, which was significantly lower than that in the experimental groups (71.0% to 76.7%; p<0.05). The average duration of pregnancy in the group supplemented with the vitamin complex was days, which was similar to that in the case of the control group. The birth weight of calves from cows fed with vitamin complex was 25.3 to 27.0 kg, which was similar to that in the case of the control group (25.2 to 26.0 kg). In the case of primiparous KNC, no differences in the estrus rate, pregnancy rate, gestation length, or the birth weight of calves were noted between the groups. Thus, dietary supplementation vitamin and mineral complex have no effect on the reproductive efficiency in primiparous cows, but the pregnancy rate was observed to have increased in multiparous KNC with these supplements.
This study was to investigate pregnancy rate of IVM/IVF/IVC Korean cattle (registered in government) embryos according to transport time course. For the production of embryos, oocytes recovered from slaughtered excellent grade cow and highly motile frozen‐thawed bull semen (purchased from LIMC, KPN#497) was used. In vitro produced embryos were cultured in CR1aa medium for 8 days and some of them were frozen. The rate of average cleavage (>2‐cell) was 83.0% (308/371) and blastocyst rate at day 8 was 34.7% (107/308). Among in vitro produced blastocyst embryos at day 8, most healthy embryos were freshly transferred on production day and some frozen embryos were direct transferred on appropriate day. These embryos were produced in a laboratory, embryo transfer (ET) was planned in 10 areas of the remote island (Jeju) from the laboratory by airplane. Thus, we examined the pregnancy rate in recipient cow according to embryo of transport time course before ET. From embryo transferred 44 recipient cows, overall pregnancy was 40.9% (18/44), these 18 cows were all calved [single, 94% (17/18); twin, 6% (1/18)] and total embryo implantation rate was 26% (19/66). Comparing transport time in the base of 6 hr, pregnancy rate in ET group required less 4 hr (60%, 9/15) was significantly higher than that required more 6 hr (26.3%, 5/19). In direct ET of freezing embryos, the pregnancy rate was 40% (4/10). However, it was difficult to find the meaning of temperature, pH and corpus luteum quality of recipients on comparison of pregnancy rate. When the cell death level of embryos according to storage time in thermos (straw container) before ET was measured by TUNEL staining, apoptotic index was increased with storage time‐dependent. These results demonstrated that long distance transfer of IVM/IVF/IVC embryos is possible and the time of embryo transport is very important for the pregnancy rate on field trial.