검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 17

        1.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: Germ cells undergo towards male or female pathways to produce spermatozoa or oocyte respectively which is essential for sexual reproduction. Mesenchymal stem cells (MSCs) have the potential of trans-differentiation to the multiple cell lineages. Methods: Herein, rat MSCs were isolated from bone marrow and characterized by their morphological features, expression of MSC surface markers, and in vitro differentiation capability. Results: Thereafter, we induced these cells only by retinoic acid supplementation in MSC medium and, could able to show that bone marrow derived MSCs are capable to trans-differentiate into male germ cell-like cells in vitro. We characterized these cells by morphological changes, the expressions of germ cell specific markers by immunophenotyping and molecular biology tools. Further, we quantified these differentiated cells. Conclusions: This study suggests that only Retinoic acid in culture medium could induce bone marrow MSCs to differentiate germ cell-like cells in vitro . This basic method of germ cell generation might be helpful in the prospective applications of this technology.
        4,000원
        2.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        All-trans retinoic acid (ATRA) is a derivative of vitamin A and exhibits anticancer activity against acute promyelocytic leukemia. Fenbendazole (FBZ) is a benzimidazole anthelmintic that has wide safety margin and low toxicity. Recently, FBZ has been found to have anticancer activity by destabilizing microtubules. In this study, we treat ATRA and FBZ on HL-60 cells, a human leukemia cell line, to investigate the synergistic effects of two drugs, and the potential anticancer mechanism. ATRA and FBZ significantly decreased the metabolic activity of HL-60 cells at 0.04 μM ATRA. Cell viability of ATRA-treated HL-60 cells decreased in a concentration-dependent manner and more decreased by FBZ. N-acetyl cysteine, an inhibitor of reactive oxygen species production, significantly increased the metabolic activity of the cells treated with ATRA and FBZ. Hoechst 33342 and propidium iodide staining showed the presence of broken nuclei in the HL-60 cells treated with ATRA and FBZ. And also, an apoptosis analysis demonstrated that 0.2 μM FBZ increased the percentages of cells in apoptosis and necrosis. In contrast, 0.04 μM ATRA showed no significant difference. Based on multiple assays, ATRA and FBZ showed not synergistic, but additive effect on HL-60 cells. This study may provide researchers and clinicians in cancer-related fields with some valuable information regarding the application of ATRA and FBZ.
        4,000원
        3.
        2012.09 구독 인증기관 무료, 개인회원 유료
        Retinoic acid plays an important role in the regulation of cell growth and differentiation. In our present study, we evaluated the effects of all-trans retinoic acid (RA) on cell proliferation and on the cell cycle regulation of human gingival fibroblasts (HGFs). Cell proliferation was assessed using the MTT assay. Cell cycle analysis was performed by flow cytometry, and cell cycle regulatory proteins were determined by western blot. Cell proliferation was increased in the presence of a 0.1 nM to 1μM RA dose range, and maximal growth stimulation was observed in cells exposed to 1 nM of RA. Exposure of HGFs to 1 nM of RA resulted in an augmented cell cycle progression. To elucidate the molecular mechanisms underlying cell cycle regulation by RA, we measured the intracellular levels of major cell cycle regulatory proteins. The levels of cyclin E and cyclin-dependent kinase (CDK) 2 were found to be increased in HGFs following 1 nM of RA treatment. However, the levels of cyclin D, CDK 4, and CDK 6 were unchanged under these conditions. Also after exposure to 1 nM of RA, the protein levels of p21 WAF1/CIP1 and p16 INK4A were decreased in HGFs compared with the control group, but the levels of p53 and pRb were similar between treated and untreated cells. These results suggest that RA increases cell proliferation and cell cycle progression in HGFs via increased cellular levels of cyclin E and CDK 2, and decreased cellular levels of p21 WAF1/CIP1 and p16 INK4A.
        4,000원
        4.
        2012.06 구독 인증기관·개인회원 무료
        MAC-T cells, bovine mammary epithelial cell line, have been utilized to investigate bovine lactation system. A lactogenic phenotype of the cell is generally induced by combination of dexamethasone, insulin and prolactin (PRL). Effect of vitamin A derivative retinoic acid (RA), well reported as an inducer for differentiation in many cells, to MAC-T cell has not been studied. The objective of this study was to confirm effect of differentiation potential by RA treatment in MAC-T cells and to test effect of combination of RA and PRL treatment. In RA or PRL treatment groups, both has induced morphological change to secrete milk of MAC-T cells. Combination of RA and PRL treatment group has presented noticeable lactogenic phenotype among the all group. This phenotype observed at four days after treatment and showed critical morphological change that was rouphly spherical structure at eight days. RA alone treatment showed slightly inhibition of proliferation in the MAC-T cells, but co-treatment with PRL was improved the cell growth more than control group. MTT assay result and Bcl-xL/Bax ratio of mRNA abundance also was entirely consistent with earlier one. RA-induced differentiation of MAC-T cells has increased αs1-casein, αs2-casein and β-casein mRNA expression compared to PRL treatment group. Expression of αs1-casein, αs2-casein and β-casein genes represented the maximum value in the combination of RA and PRL treatment group at four days. The value of each casein gene expression was 4-, 5.5- and 5.9-fold, respectively, as compared with PRL alone treatment in the MAC-T cells. Protein level of β-casein releasing to the medium also induced the highest level at four days. These results provide evidence that RA can induce the differentiation of MAC-T cells and have synergetic effect with PRL.
        10.
        2007.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this study was to examine the effects of vi tamin D3 and 1'etinoic acid(RA) on the human mesenchymal stem ce!ls(MSC) g1'owth and osteogenic differentiations. Cell proliferation, mineralization, cell cycle, expression of cell cycle regu l atOJγ proteins and markers fo1' osteogenic differenatiaiton were determined by MTI assay, mineralization assay, flow cytomet1'Y‘ and Western blot analysis, respectively. Cell viability was dec1'ease by each vitamin D3 and RA added to MSC. it was more decrease by vitamin D3 and RA. Mineralized nodule formation revealed similar expression pattern with positive cont rol group at vitamin D3 and RA mixed add to MSC. At vitamin D3 and RA mixed add to MSC after 7 days of incubation was increase G1 s tage. after 21 days of incubation was inhibit cell cycle prog1'ess by inc1'ease of sub-G1 Treatment vitamin D3 to MSC inhibits p53 and p21, but inc1'ease pRb. RA inhibit p53, but increase p21 and pRb, vitamin D3 plus RA group was same as added RA group. so two vitamin was effect to inhibited cell growth each different mechanism. Expression of BMP-2 protein was prominent in osteogonic supplement treated g1'oup of MSC at 2 weeks cultivation days, but vi tamin D3 treatment decreased BMP-2 expression rather than in (+) control group. BSP protein was notably increased in the OS compa red to positive controls at 2 weeks cultivation, but similar to that of vitamin D3 group t1'eatment group and was least expressed in plus RA mixed group, at 3 weeks, BSP expression was similar to 1'esult of 2 weeks Collectively, these results shows that vitamin D3 and RA have diffe1'ential effects on the MSCs g1'owth and differ entia tion 211
        4,000원
        16.
        2017.08 서비스 종료(열람 제한)
        Peroxiredoxin1 (Prdx1) is an antioxidant enzyme belonging to the peroxiredoxin family of proteins. Prdx1 catalyzes the reduction of H2O2 and alkyl hydroperoxide and plays an important role in different biological processes. Prdx1 also participates in various age-related diseases and cancers. In this study, we investigated the role of Prdx1 in pronephros development during embryogenesis. Prdx1 knockdown markedly inhibited proximal tubule formation in the pronephros and significantly increased the cellular levels of reactive oxygen species (ROS), which impaired primary cilia formation. Additionally, treatment with ROS (H2O2) severely disrupted proximal tubule formation, whereas Prdx1 overexpression reversed the ROS-mediated inhibition in proximal tubule formation. Epistatic analysis revealed that Prdx1 has a crucial role in retinoic acid and Wnt signaling pathways during pronephrogenesis. In conclusion, Prdx1 facilitates proximal tubule formation during pronephrogenesis by regulating ROS levels.
        17.
        2016.12 KCI 등재 서비스 종료(열람 제한)
        본 연구에서는 수용액상에서 자기조립 나노입자를 형성할 수 있는 레티노익산이 접목된 양친성 폴리아미 노산 유도체를 합성하였다. 합성한 양친성 폴리아미노산은 레티노익산의 접목도가 각각 5, 10, 30 mol%가 되도 록 조절하였다. 수용액 상에서 양친성 폴리아미노산은 소수성 레티노익산의 분자 결합에 의해 안정한 자기조립 나노입자를 형성하였다. 자기조립 나노입자는 레티노익산의 접목도가 증가할수록 크기는 작아지고 형태는 구형 에서 이중층 구조로 전이되었다. 또한 접목도가 10%일 때, 자기조립 입자의 구조 붕괴 없이 레티놀의 포집 및 전달이 가장 효과적인 것을 확인하였다. 접목도가 제어된 자기조립입자는 레티놀을 안정적으로 포집할 수 있기 때문에 주름개선제 및 다양한 기능성 화장품 전달체로 활용될 수 있다