고성능섬유복합시멘트 복합체 및 FRP 외피보강 실험체의 방폭성능을 평가하기 위해 1900×1900× 105mm 크기의 이방향 슬래브를 대상으로 옥외 폭발실험을 수행하였다. 설계압축강도, 섬유혼입률, 섬 유종류를 변수로 고려하여 이방향 슬래브 실험체를 제작하였다. 폭발의 종류는 폭압측정과, 구조부재 의 구조적 방폭성능의 평가를 위해 원거리 폭발(Far Field Blast)로 선정되었다. 이에 TNT 장약량 100kg, 이격거리 5m의 폭발 실험 조건이 고려되었다. 또한 구조부재의 방폭성능 평가를 위해 가속도 계, 스트레인게이지, 동적변위계, 압력계가 실험체에 부착되었으며 초고속카메라를 활용해 폭발로 인한 실험체의 거동을 촬영하였다. 실험의 결과로 보통콘크리트 변수의 경우 가해진 폭압에 의해 실험체 중 앙부의 천공과 같은 극심한 손상이 발생하였다. 강섬유 보강 HPFRCC 실험체의 경우 실험체 하단부 의 국부적인 손상이 발생하였다. 강섬유의 가교효과로 인해 배면 박리는 발생하지 않았으며 약 80mm 의 영구 변형이 발생하였다. 또한 폭발하중으로 인해 높은 가속도가 측정되었으며 이러한 측정결과는 해당 실험체가 재료파괴로 인한 에너지 소산이 아닌 폭발하중에 직접적으로 저항한 것으로 판단된다. 유기섬유(Aramid) 보강 HPFRCC의 경우 폭발하중으로 인해 심각한 파괴양상이 나타났다. 이러한 파 괴양상은 취성적 특성을 가진 유기섬유가 폭발하중에 의해 파괴되어 충분한 인성을 나타내지 못한 것 으로 판단된다. 마지막으로 FRP 외피 보강 HPFRCC의 실험 결과로 중간 정도의 파괴가 발생하였으 나 배면 박리는 나타나지 않았다. 폭발 하중으로 인한 영구변형은 약 40mm 발생하였다. 강섬유 보강 HPFRCC의 결과와 달리 더 낮은 수준의 가속도가 측정되어 FRP 외피 보강 HPFRCC 실험체는 폭발 에너지를 소산시킨 것으로 판단된다. 결론적으로 인명피해와 직접적인 연관이 있는 배면 박리의 발생 유무와 에너지 소산 및 저항, 잔류처짐의 측면에서 HPFRCC가 우수한 방폭 성능을 나타냈음을 실험 적으로 확인하였다.
The purpose of this study is to experimentally analyze the seismic performance of beam-column specimens with vertical irregular, which were reinforced with RHS (Replaceable steel haunch system). a steel haunch system. To evaluate the seismic performance of the RHS, three specimens were manufactured and subjected to cycle loading tests. Retrofitted specimens have different beam-upper column stiffness ratio as a variable. The stiffness ratio of beam-upper column were considered to be 1.2 and 0.84. As a result of the test, the specimen reinforced with RHS showed improved maximum load and effective stiffness, and energy dissipation capacity compared to the non-retrofitted specimen with same beam-upper column stiffness ratio. The specimen with 0.84 beam-upper column stiffness ratio showed improved performance than the specimen with 12.
This study proposed a seismic reinforcement of RC columns with non-seismic details, a fiber reinforcement method of aramid sheets and MLCP (high elasticity aromatic polyester fiber material) with different characteristics, and 4 full-size column specimens and conducted experiments. The results show that a non-seismic specimen (RC-Orig) rapidly lost its load-bearing capacity after reaching the maximum load, and shear failure occurred. The RC column reinforced with three types of aramid did not show an apparent increase in strength compared to the unreinforced specimen but showed a ductile behavior supporting the load while receiving a lateral displacement at least 1.57 to 1.95 times higher than the unreinforced specimen. The fracture mode of the specimen, according to the application of lateral load, also changed from shear to ductile fracture through aramid-based reinforcement. In addition, when examining the energy dissipation ability of the reinforced specimens, a ductile behavior dissipating seismic energy performed 4 times greater and more stably than the existing specimens.
본 논문에서는 철계형상기억합금(Fe SMA) 스트립으로 능동구속된 콘크리트 기둥의 실험적, 해석적 연구결과를 제시한다. Fe SMA과 탄소섬유보강시트(CFRP)로 각각 구속된 콘크리트 공시체의 압축실험을 통해 형상기억합금 기반 능동구속기법의 효과성을 평가하였다. 실험결과, Fe SMA 스트립으로 구속된 콘크리트 공시체가 낮은 구속력에도 불구하고 CFRP 시트로 구속된 공시체에 비 해 더 우수한 변형능력을 가지는 것으로 밝혀졌다. 실험을 통해 얻은 구속된 콘크리트의 압축거동 결과를 이용해 소성힌지 영역이 각 각 Fe SMA 스트립과 CFRP 시트로 보강된 콘크리트 기둥의 유한요소모델을 구축하였다. 기존 수행된 콘크리트 기둥의 수평반복가력 실험결과를 바탕으로 구축된 기둥 모델을 검증하였고, 각각의 기둥 모델에 대한 수평반복가력 해석을 수행하였다. 해석결과, Fe SMA 스트립으로 보강된 콘크리트 기둥이 CFRP 시트로 보강된 기둥모델에 비해 변형, 에너지 소산능력 향상에 효과적임을 확인하였다.
The collapse of reinforced concrete (RC) frame buildings is mainly caused by the failure of columns. To prevent brittle failure of RC column, numerous studies have been conducted on the seismic performance of strengthened RC columns. Concrete jacketing method, which is one of the retrofitting method of RC members, can enhance strength and stiffness of original RC column with enlarged section and provide uniformly distributed lateral load capacity throughout the structure. The experimental studies have been conducted by many researchers to analyze seismic performance of seismic strengthened RC column. However, structures which have plan and vertical irregularities shows torsional behavior, and therefore it causes large deformation on RC column when subjected to seismic load. Thus, test results from concentric cyclic loading can be overestimated comparing to eccentric cyclic test results, In this paper, two kinds of eccentric loading pattern was suggested to analyze structural performance of RC columns, which are strengthened by concrete jacketing method with new details in jacketed section. Based on the results, it is concluded that specimens strengthened with new concrete jacketing method increased 830% of maximum load, 150% of maximum displacement and changed the failure modes of non-strengthened RC columns.
In the case of columns in buildings with soft story, the concentration of stress due to the difference in stiffness can damage the columns. The irregularity of buildings including soft story requires retrofit because combined load of compression, bending, shear, and torsion acts on the structure. Concrete jacketing is advantageous in securing the strength and stiffness of existing members. However, the brittleness of concrete make it difficult to secure ductility to resist the large deformation, and the complicated construction process for integrity between the existing member and extended section reduces the constructability. In this study, two types of Steel Grid Reinforcement (SGR), which are Steel Wire Mesh (SWM) for integrity and Steel Fiber Non-Shrinkage Mortar (SFNM) for crack resistance are proposed. One reinforced concrete (RC) column with non-seismic details and two columns retrofitted with each different types of proposed method were manufactured. Seismic performance was analyzed for cyclic loading test in which a combined load of compression, bending, shear, and torsion was applied. As a result of the experiment, specimens retrofitted with proposed concrete jacketing method showed 862% of maximum load, 188% of maximum displacement and 1,324% of stiffness compared to non-retrofitted specimen.
본 연구에서는 직관적인 적용 및 응용이 가능한 FRP 구속 콘크리트의 재료모형을 반영하는 단면해석 기법을 적용하여 FRP 보강 RC 교각의 성능 증진효과 분석을 수행하였다. 분석 대상 교각은 국내 시설물 내진성능평가 지침인 「기존 시설물 (교량)의 내진성능 평가요령 해설 및 예제집(국토해양부, 2015)」에서 제시하고 있는 예제 모델을 대상으로 하였으며, Lam and Teng. (2003)의 FRP 구속 콘크리트 재료 모델을 활용하여 단면해석을 수행하였다. 미국 콘크리트 학회(ACI, American Concrete Institute)의 구조물 FRP 보강 매뉴얼인 ACI440.2R-17에서 제시하고 있는 구조물 보강용 FRP 소재 물성 제원을 활용하였으며, 구조물 FRP 보강 설계 세부 조항을 따랐다. 국내 내진성능 평가요령에 제시된 교각의 축방향 철근 겹침이음을 조항을 고려하여 기존 교각의 콘크리트 재료 물성을 가정하여 매개변수 연구를 수행하였으며, FRP 보강재 소재별 보강 겹수를 고려하여 FRP 보강 RC 교각의 휨 성능 증진 효과 분석을 수행하였다.
This study develops finite element models for seismically-deficient reinforced concrete building frame retrofitted using fiber-reinforced polymer jacketing system and validates the finite element models with full-scale dynamic test for as-built and retrofitted conditions. The bond-slip effects measured from a past experimental study were modeled using one-dimensional slide line model, and the bond-slip models were implemented to the finite element models. The finite element model can predict story displacement and inter-story drift ratio with slight simulation variation compared to the measured responses from the full-scale dynamic tests.
Nonlinear static analysis and preliminary evaluation were performed in this study to evaluate the seismic performance of unreinforced masonry buildings subjected to various soil conditions based on the revised Korean Building Code. Preliminary evaluation scores and nonlinear static analyses indicated that all buildings were susceptible to collapse and did not reach their target performance. Therefore, retrofit of those building models was carried out through a systematic procedure to determine areas to be strengthened. It was possible to make most building models satisfy performance objectives through the reinforcement alone of damaged external shear walls. However, the application of a preliminary evaluation procedure to retrofit design was found to be too conservative because all the retrofitted building models verified with nonlinear static analysis failed to satisfy performance objectives. Therefore, it is possible to economically retrofit unreinforced masonry buildings through the fortification of external walls if a simple evaluation procedure that can efficiently specify vulnerable parts is developed.
최근 국내의 지진발생 빈도가 증가함에 따라, 지진피해 저감 시스템 중 가장 효율이 높은 제진방식의 문제점을 해결하며 댐퍼의 복원성과 에너지 소산 능력을 증가시켜 잔류변형 감소와 사용성 증대 효과를 발생시키는 새로운 제진설계 방식이 필요하다. 본 연구에서는 학교 등 기존에 시공된 비내진상세 철근콘크리트 구조물의 지진에 의한 뒤틀림 방지, 횡방향 변위제어 및 진동저감을 위하여 구조물의 양 옆에 원형강봉댐퍼를 설치하는 시스템을 제안하고, 2층 철근콘크리트골조 실험체를 반복횡 하중 가력 하여 내진성능을 평가하였다. 무보강 및 보강 실험체들의 실험결과를 비교한 결과 외부보강용 원형강봉댐퍼 시스템이 2층 철근콘크리트 골조의 강성과 에너지소산면적을 증가시켜 내진성능을 증가시킴을 확인하였다. 또한 원형강봉댐퍼가 지진 에너지를 소산하여 지진력을 흡수함을 확인하였다.
Existing reinforced concrete frame buildings designed for only gravity loads have been seismically vulnerable due to their inadequate column detailing. The seismic vulnerabilities can be mitigated by the application of a column retrofit technique, which combines high-strength near surface mounted bars with a fiber reinforced polymer wrapping system. This study presents the full-scale shaker testing of a non-ductile frame structure retrofitted using the combined retrofit system. The full-scale dynamic testing was performed to measure realistic dynamic responses and to investigate the effectiveness of the retrofit system through the comparison of the measured responses between as-built and retrofitted test frames. Experimental results demonstrated that the retrofit system reduced the dynamic responses without any significant damage on the columns because it improved flexural, shear and lap-splice resisting capacities. In addition, the retrofit system contributed to changing a damage mechanism from a soft-story mechanism (column-sidesway mechanism) to a mixed-damage mechanism, which was commonly found in reinforced concrete buildings with strong-column weak-beam system.
This study investigates the seismic performance of a hybrid seismic energy dissipation device composed of a viscoelastic damper and a steel slit damper connected in parallel. A moment-framed structure is designed without seismic load and is retrofitted with the hybrid dampers. The model structure is transformed into an equivalent simplified system to find out optimum story-wise damper distribution pattern using genetic algorithm. The effectiveness of the hybrid damper is investigated by fragility analysis of the structure with and without the dampers. The analysis results show that after seismic retrofit the probability of reaching damage states, especially the complete damage state, of the structure turn out to be significantly reduced.
Existing reinforced concrete building structures have seismic vulnerabilities due to their seismically-deficient details resulting in non-ductile behavior. The seismic vulnerabilities can be mitigated by retrofitting the buildings using a fiber-reinforced polymer column jacketing system, which can provide additional confining pressures to existing columns to improve their lateral resisting capacities. This study presents dynamic responses of a full-scale non-ductile reinforced concrete frame retrofitted using a fiber-reinforced polymer column jacketing system. A series of forced-vibration testing was performed to measure the dynamic responses (e.g. natural frequencies, story drifts and column/beam rotations). Additionally, the dynamic responses of the retrofitted frame were compared to those of the non-retrofitted frame to investigate effectiveness of the retrofit system. The experimental results demonstrate that the retrofit system installed on the first story columns contributed to reducing story drifts and column rotations. Additionally, the retrofit scheme helped mitigate damage concentration on the first story columns as compared to the non-retrofitted frame.
In this paper, four point bending tests were carried out to analyse flexural strengthening effect by CFRP (Carbon Fiber Reinforced Polymer) layers for I shape PFRP (Pultruded Fiber Reinforced polymer) flexural member retrofitted with CFRP sheet. Comparing load-displacement relation and sectional stress distribution, the flexural strengthening effect by the number of CFRP layers was founded.
To investigate the cyclic characteristics of the retrofitted exterior joints of RC frame with haunch, 70% scaled 6 beam-column exterior joint subassemblies were designed according to design guideline according to 1988 and tested with cyclic loading up to 3.5% story drift ratio. During the experiments axial forces are applied to columns to simulate gravity load. Experimental results shows that the strength of retrofitted specimens was increased steadily until 2.5% story drift ratio and their strengths increased more than 1.7 times of the non-retrofitted in case that main bar was bent away from exterior joint. The joint strength and effective stiffness of the retrofitted specimen was increased and results in more deformation capacity compared to the non-retrofitted.