Background : When the Platycodon grandiflorum is applied before the rainy season, the increase of the incidence of the Platycodon grandiflorum root rot disease increases greatly. This experiment was carried out to reduce the incidence of rot root rot disease through the lodging protecting method.
Methods and Results : Three-years-old Platycodon grandiflorum was subjected to four treatments with no treatment, net installation, cutting stem, and removing bud. No treatment was used as a control, and as a further control, netting was used in the Platycodon grandiflorum to set up a treatment with almost no lodging. In the case of cutting stem, the stem was cut off in the middle of June, leaving more than 60 ㎝ before flowering. In the case of removing bud, blooming just before, the bud was removed. As a result, the coverage rate was the highest at 36.9% in the non - treatment area in the middle of July after the rainy season and 0.4% in the net installation. Compared with the case of cutting a lot of stems, 12.7% of the stem was covered with stones, whereas the stalk was 31.8%, which was close to the untreated stomach. As a result of the change of morbidity rate per treatment, it showed a morbidity rate of 49.7% in case of net installation, compared with 60% or more morbidity rate in case of untreated.
Conclusion : As a result, an anti-lodging technic has helped prevent the onset of root rot disease. Further research on how to prevent the lodging of Platycodon grandiflorum using cutting stem will be needed.
Lodging is classified as root lodging caused by the loss of supporting force in the root, bending caused by the deformation of the stem and breaking where the stem breaks down as loads exceeding critical elasticity were applied. This research excluded breaking which is not in a state of equilibrium and tried to partition the level of lodging using an algebraic model in root lodging and stem lodging, or bending. When a vertical load was applied, the deformation of the stem of rice plant showed the form of a quadratic equation. The trace of the panicle neck in the process of lodging was an ellipse-shape. When loading was pure root lodging, the trace of the panicle neck became a circle of which culm length is the radius. When it was a pure stem lodging, the trace of the panicle neck is an ellipse of which major axis is culm length and minor axis is 0.64* culm length. When both stem lodging and root lodging occurred in a natural setting, the partitioning of lodging can be calculated by a formula using eccentricity of an ellipse, S=e*100/0.768(S is the ratio of stem lodging in the whole lodging, e is eccentricity of the ellipse). This method is expected to be useful in simple lodging partitioning. We could also calculate the partitioning of stem lodging and root lodging as units of angles as an accuracy method, by using a straight line calculated by differentiating a quadratic equation of stem deformation at the origin of the coordinates. These two methods for dividing root and stem lodging showed different values. However, each of them showed almost same values with different lodging degree in one plant.
Rice seedling test was conducted to check the loging tolerance at ripening stage through evaluating the root characters. Thirteen Korean and foreign rice cultivars with direct seeding adaptable or high quality characteristics were grown in a cell pot and under submerged paddy. The root characters and pushing resistance of rice hill were determined at seedling and ripening stage, respectively. The diameter of crown root at the 7th and 8th leaf stages was thicker in lodging tolerance cultivars than those of others and showed significant-positive correlation with both pushing resistance and crown root diameter of mature plants. Also, the tensile strength of crown root at the 7th and 8th leaf stage showed highly positive correlation with the tensile strength of crown root of mature plants. The number of crown root at 7th leaf stage was significant-positively correlated with that of mature plant. The diameter of seminal root was not significantly correlated with the diameter of crown root throughout the whole growth stage. These results indicate that the diameter, tensile strength and number of crown root associated with root lodging tolerance can be detected with the seedling at about 7th or 8th leaf stage, and the seedling test using the cell pot is an useful and practical method to select lodging tolerant cultivars or lines of rice based on root characters, especially diameter of crown root.
우리나라 대두도복의 원인을 구명하기 위하여 동일한 조건에서 재배한 25개 재래종 수집대두 및 장려품종을 대상으로 도복정도별 근부특성을 조사하였다. 1. 완전도복성 품종군에서는 태근의 수가 현저히 적었다. 2. 근건물중, 1차근수, 부정근수 및 지상부중/근중비율과 도복과는 뚜렷한 관련성이 없었다. 3. 지상부중/태근수 비율은 도복과 밀접한 관련이 있어 도복에 강한 품종일수록 태근당 지상부중이 가벼운 경향이었다.