The present study was initiated to explore the yield potential of bushbean by exploiting the interaction of variety, sowing time, and fertilizers containing N, P, and K Two varieties namely BARI Bushbean 1 and BARI Bushbean 2, three levels of fertilizer viz. control (N0P0K0 ), medium (N20P30K30 ), high (N40P60K60 ) and three sowing times (November 15, December 1 and December 15) were considered as treatment variables. Among the varieties, BARI Bushbean 2 always showed better performance for most of the yield and yield attributes duly attributed by the application of fertilizers ~circleda N: P: K = 40: 60: 60 respectively. The highest seed yield (1375.17 kg/ha) was recorded when the crop was sown on the 15th November with the supplemented soil nutrition status as above. The influence of sowing times indicate that there is a gradual trend of decreasing in seed yield and other associated parameters after first sowing (15th~;November ). The results of this study suggest that the multi-locational trial under varied sowing times with soil nutrition might potentially increase the long-term adaptation of bushbean in Bangladesh.
Biodiversity is closely related to the conservation of ecosystems. Ecosystems provide more subtle, but equally essential, services. Microorganisms decompose human's waste and renew the soils that produce our food crops. Biodiversity in Korean paddies encompass 54 families and 107 species of freshwater invertebrates. In terms of the number of aquatic insects affected by different sources, the order starting with the highest population was swine slurry > chemical fertilizer > fresh straw with reduced fertilizers > control. The number of freshwater invertebrate and aquatic macro-invertebrate in surface water of the plots without insecticidal application were 2 and 2.1 times greater than in fields receiving insecticide applications, respectively. The soil microfungal flora of the 85 isolates paddy fields in Korea was 30 species in 13 genera and 11 isolates were unidentified yet. Agricultural policy should be changed to assist the conservation of biodiversity because until now the agricultural ecosystems have been negatively affected from the development of high-yield varieties to enhance food production, and the expansion of fertilizer and chemical use. For the conservation of agricultural ecosystems, agricultural practices with less investment and more resource saving, as well as enhancing the safety of agricultural and livestock products are essential. Finally, this paper was written for the contribution for the development of environmentally friendly farming systems with neighboring or whole ecosystems.
In Korea, silicate fertilization (SF) is being practiced every four years to enhance rice production. However, the relationship between nitrogen (N) and SF in view of growth characteristics and grain yield of rice has not been examined after watermelon cropping in plastic film house. This study was carried out to identify useful critical N and Si fertilizer levels to sustain grain yield and to improve N use efficiency for rice. The watermelon-rice cropping system has maintained for three seasons in each year from 1998 to 2001 by farmer before this experiment. Experiments on N and Si fertilization levels were evaluated with Hwayoungbyeo (Oryza sativa L.) in 2002 and 2003 at Uiryeong, Korea. The goal of this experiment was to find out the optimum N and Si levels to sustain rice yield by reducing excessive N fertilizer in watermelon-rice cropping system. Nitrogen fertilization (NF) levels were three (0,~;57,~;114kg~;ha-1;0,~;50,~;100% of conventional NF amount) and five (0, 25, 50, 75, 100%) in 2002 and 2003, respectively, and combined with three SF levels (70,~;130,~;180mg~;kg-1;100,~;150,~;200% which were adjusted with Si fertilizer in soil) were evaluated for the improvement of N and Si fertilization level in both years. Rice yielded 3.98-5.95 and 2.84-4.02 t/ha in 2002 and 2003, respectively. Our results showed the combinations of 50% and 100% of N with 200% level of Si produced the highest grain yield in both years, respectably. The grain yield was greatly improved in plot of N25% level when compared to conventional NF (Nl00%) in 2003. In conclusion, NF amount could be reduced about 50% compared to recommended level by specific fertilization of N and Si combination levels for rice growing and grain yield after cultivation watermelon in paddy field.
This study was conducted to investigate the relations between brown planthopper (BPH, Nilapavata lugens) resistance and specific organic acids (oxalic acid, silicic acid, and trans-aconitic acid) known as BPH sucking inhibitors on different rice varieties and/or lines. There were no specific relations between BPH resistance and the contents of oxalic and silicic acids in the rice plant tissues. However, the stronger the BPH resistance was occurred, the higher the content of trans-aconitic acid was contained in the rice plants. The relations between the injury rate of rice plant by BPH and the content of trans-aconitic acid in the rice plants were negatively correlated, which were -0.84 and -0.82 at 30 and 60 days after seeding, respectively. Therefore, the content of trans-aconitic acid in rice plant tissues might be utilized as an index for improving BPH resistance of rice varieties.
Randomized field experiments were conducted to study the interactive effect of sulphur (S) and nitrogen (N) on seed, oil and protein yield of two cultivars of groundnut Arachis hypogea: cv Amber (V1) : cv Kaushal, (V2) . Two dosage levels of sulphur (0~;and~;20kg~;ha-1 ) and two dosage levels of N (23.5~;and~;43.5kg~;ha-1 ) in various combinations were tested as micronutrient treatments, T1,~;T2,~;and~;T3 . Results indicated significant enhancement of the yield components namely seed and oil yield as well as seed protein. Maximum response was observed with treatment T3 (having 20kg S and 43.5kg N ha-1) . Increase in seed and oil yields of 90% and 103% in V1 , and 79 and 90% in V2 , respectively were recorded as compared to the control treatment T1 (having 0kg S and 23.5kg N ha-1 ). Effect of S and N interaction was observed on protein, N and S content in seeds. The results obtained by these experiments clearly suggest that judicious balanced application of N and S could improve the yield.
When GA4 was applied to heading stage, it was examined to understand the change of plant hormones and starch during grain filling and ripening. Exogenous gibberellin caused a dramatic decrease in endogenous ABA content. Endogenous GA4 content in both superior and inferior part was more promoted in GA4-treated rice grain than in the control. GA1 content of an inferior part was not detected in the control and GA4-treated rice otherwise GA4 was detected in all grain parts. Ripened grain rate in GA4-treated rice grain was lower than that of the control plant. Amylopectin from GA4-treated grain contained more very short chains with degree of polymerization (DP) between 4 and 8 than amylopectin from the control plant. It suggests strongly that fine structure of rice endosperm may be changed by exogenously applied GA4 in rice plants.
The response of chickpea (Cicer arietinum L.) to dual inoculation with Rhizobium (R) and arbuscular mycorrhiza (AM), nitrogen (N) and phosphorus (P) was studied on spore abundance and colonization of AM, nodulation, growth, yield attributes and yield. In all the parameters of the crop the performance of Rhizobium inoculant alone was superior to control. Dual inoculation with Rhizobium and AM in presence of P performed the best in recording number of spore 100g-1 rhizosphere soil and root colonization, number and dry weight of nodule, dry weights of shoot and root, number of pod plant-1 , number of seed pod-1 , seed and stover yields of chickpea. The maximum seed yield of 3.33 g plant-1 was obtained by inoculating chickpea plants with Rhizobium and AM in association with P. From the view point of nodulation, growth, yield attributes and yield of chickpea, dual inoculation with Rhizobium and AM along with P was considered to be the balanced combination of nutrients for achieving the highest output from cultivation of chickpea in Shallow Red Brown Terrace Soil of Bangladesh.
The effects of Rhizobium inoculant, compost, and nitrogen on nodulation, growth, dry matter production, yield attributes, and yield of pea (Pisum sativum) var, IPSA Motorshuti-3 were assessed by a field experiment. Among the treatments Rhizobium inoculant alone performed best in recording number and dry weight of nodules/plant. The highest green seed yield of 8.38 ton/ha (36.9% increase over control) and mature seed yield of 2.97 ton/ha (73.7% increase over control) were obtained by the application of 90 kg N/ha. The effects of 60 kg N/ha, Rhizobium inoculant alone and Rhizobium inoculant along with 5 ton compost/ha were same as the effect of 90 kg N/ha in recording plant height, root length, dry weight of shoot, and root both at preflowering and pod filling stages, number of mature pods/plant, number of mature seeds/pod, 1000-seed weight, green, and mature seed yields of pea.
Lodging is classified as root lodging caused by the loss of supporting force in the root, bending caused by the deformation of the stem and breaking where the stem breaks down as loads exceeding critical elasticity were applied. This research excluded breaking which is not in a state of equilibrium and tried to partition the level of lodging using an algebraic model in root lodging and stem lodging, or bending. When a vertical load was applied, the deformation of the stem of rice plant showed the form of a quadratic equation. The trace of the panicle neck in the process of lodging was an ellipse-shape. When loading was pure root lodging, the trace of the panicle neck became a circle of which culm length is the radius. When it was a pure stem lodging, the trace of the panicle neck is an ellipse of which major axis is culm length and minor axis is 0.64* culm length. When both stem lodging and root lodging occurred in a natural setting, the partitioning of lodging can be calculated by a formula using eccentricity of an ellipse, S=e*100/0.768(S is the ratio of stem lodging in the whole lodging, e is eccentricity of the ellipse). This method is expected to be useful in simple lodging partitioning. We could also calculate the partitioning of stem lodging and root lodging as units of angles as an accuracy method, by using a straight line calculated by differentiating a quadratic equation of stem deformation at the origin of the coordinates. These two methods for dividing root and stem lodging showed different values. However, each of them showed almost same values with different lodging degree in one plant.
In order to assess antioxidant capacity in relation to seed traits of rice (Oryza sativa L.), ninety-six varieties were examined for antioxidative activity of brown rice grain using superoxide dismutase (SOD), 1,1-diphenyl-2-picrylhydrazyl (DPPH), and thiobarbituric acid (TBA) assays. Overall, average total activities measured by the three methods were of very wide range between 64% and 13%. Significant differences were noted depending on the variety and evaluation method. Rice varieties with foreign origin, middle maturity, colored hulls, and colorless awn exhibited statistically significant higher total activity. As for the measurements, total activity was significantly correlated with SOD (r=0.29***), DPPH (r=0.80***) and TBA (r=0.76***). Between the three activities, SOD was not positively correlated with DPPH (r=0.15*), while TBA was significantly correlated with DPPH value (r=0.51***). DPPH (55.20%) and TBA (50.36%) were significantly higher in foreign rice, while SOD activity (44.29%) was significantly higher in domestic rice. However, an average total activity was significantly higher in foreign rice (47.31%) than in domestic rice (35.92%). SOD, DPPH and TBA activities of middle maturity in maturity time were the highest total activity (44.96%) and significantly differed from the other two groups. Total activity was significantly higher in rice with a colorless awn (42.18%) than with a colored awn (35.87%).
It is important to understand pedigree of rice cultivars commonly used for breeding. In this paper, pedigree tables for tracking the pedigree of 17 representative rice cultivars recommended by Rural development Adminstration (RDA) were completed and analyzed using two kinds of web database system; 'IRIS' and 'RRDB'. Seven cultivars, namely, 'Sangmibyeo', 'Ilpumbyeo', 'Saegewhabyeo', 'Surabyeo', 'Shindongjinbyeo', 'Ilmibyeo' and 'Jungwhabyeo' had 'Koshihikari' on the pedigree of their ancestor. Besides 'Koshihikari', the most feguently used ancestral germplasms among the high quality rice cultivars were 'Fujisaka 5', 'Kameno o' and 'Asahi', 'Fujisaka 5' was used as ancestral parent in 12 out of 17 cultivars. Interestingly, 'Kameno o' was used in pedigree of 16 out of 17 high quality varieties and 'Asahi' was used in the ancestral pedigree of all 17 varieties. 'Hwayeongbyeo' was used as one of parent in the breeding of 'Dongjin 1', 'Hwabongbyeo', 'Saegewhabyeo' and 'Junambyeo'. 'Ilpumbyeo' was used in the breeding pathway of 'Junambyeo' and 'Saegewhabyeo', 'Mangeumbyeo' itself was not enlisted as one of high quality rice cultivars, but was used as a breeding parent of three high quality varieties, namely, 'Saegewhabyeo', 'Hwabongbyeo' and 'Nampyeongbyeo'. Incorporated with evaluation data, pedigree will provide a valuable chance to genealogical tracking of agronomic traits such as disease resistance, grain quality and etc.
The viviparous germination (VG) with lodging caused the yield reduction and quality deterioration in rice. We carried out the evaluation of VG tolerance (on the 40th day after heading) and mapping QTLs associated with VG tolerance using the recombinant inbred lines (M/G RILs) from a cross between Milyang 23 (japonica/indica) and Gihobyeo (japonica). The VG rates of Milyang 23 and Gihobyeo were 0.0 and 7.0%, respectively. The averaged VG rate of 162 M/G RILs was 7.7%, and their range was from 0.0 to 50.9%. Of the 162 RILs, 144 lines were tolerant less than 10%, and 18 lines were susceptible more than 10%. Using the M/G RIL Map, three QTLs associated with the viviparous trait were detected on chromosome 2 (qVG 2-1 and qVG 2-2) and 8 (qVG 8). qVG 2-1 was linked to RM 32D and RZ 166, and had LOD score of 2.97. qVG 2-2 was tightly linked to E13M59.119-Pl and E13M59.M003-P2, and showed higher LOD score of 3.41. qVG 8 was linked to RM33 and TCT116, and had LOD score of 2.67. The total phenotypic variance explained by the three QTLs was about 24.4% of the total variance in the population. The detection of new QTLs associated with VG tolerance will provide important informations for the seed dormancy, low temperature germination, or comparative genetics.