검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 45

        1.
        2023.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Structural vibration induced by earthquake hazards is one of the most significant concerns in structure performance-based design. Structural hazards evoked from seismic events must be properly identified to make buildings resilient enough to withstand extreme earthquake loadings. To investigate the effects of combined earthquake-resistant systems, shear walls and five types of dampers are incorporated in nineteen structural models by altering their arrangements. All the building models were developed as per ACI 318-14 and ASCE 7-16. Seismic fragility curves were developed from the incremental dynamic analyses (IDA) performed by using seven sets of ground motions, and eventually, by following FEMA P695 provisions, the collapse margin ratio (CMR) was computed from the collapse curves. It is evident from the results that the seismic performance of the proposed combined shear wall-damper system is significantly better than the models equipped with shear walls only. The scrutinized dual seismic resisting system is expected to be applied practically to ensure a multi-level shield for tall structures in high seismic risk zones.
        4,000원
        2.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 기존 이력댐퍼와 프리스트레트 철계 형상기억합금(Fe SMA)을 결합한 새로운 하이브리드 댐퍼를 제안하고 이용가능성을 해석적으로 평가한다. 하이브리드 댐퍼는 강진 발생 시 모멘트 프레임의 에너지소산능력을 향상시키고 잔류변형 을 감소시키기 위한 목적으로 제안되었다. 구조해석 프로그램인 OpenSees를 통해 댐퍼의 각 요소에 대한 해석모델을 구축하였 고, 세가지 형식의 강재 가새프레임에 대해 시간이력해석을 수행하였다. 해석결과, 제안된 댐퍼는 모멘트 프레임의 최대 및 잔 류변형을 줄이는데 우수한 것으로 나타났다. 본 연구에 사용된 Fe SMA는 니켈-티타늄(Ni-Ti) 형상기억합금에 비해 5-10%에 해 당하는 낮은 재료 비용을 가지면서도 지진에 취약한 프레임 구조의 내진보강에 효과적인 결과를 보였다.
        4,000원
        4.
        2020.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The performance enhancement of various damping systems from natural hazards has become an highly important issue in engineering field. In this paper, ENTA hysteretic dampers were tested under cyclic loadings to evaluate their performance in terms of ductility and energy dissipation. The test results showed that the hysteretic dampers are effective damping systems to enhance the buildings performance for remodeling and retrofit of buildings. Also, the hysteretic dampers were modeled in FEM(Finite Element Method) structural analysis program. As comparing the computer modeling and the experiment, this study model reflects the nonlinear behavior of steel and derives the hysteresis loop.
        4,000원
        5.
        2019.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        최근 국내의 지진발생 빈도가 증가함에 따라, 지진피해 저감 시스템 중 가장 효율이 높은 제진방식의 문제점을 해결하며 댐퍼의 복원성과 에너지 소산 능력을 증가시켜 잔류변형 감소와 사용성 증대 효과를 발생시키는 새로운 제진설계 방식이 필요하다. 본 연구에서는 학교 등 기존에 시공된 비내진상세 철근콘크리트 구조물의 지진에 의한 뒤틀림 방지, 횡방향 변위제어 및 진동저감을 위하여 구조물의 양 옆에 원형강봉댐퍼를 설치하는 시스템을 제안하고, 2층 철근콘크리트골조 실험체를 반복횡 하중 가력 하여 내진성능을 평가하였다. 무보강 및 보강 실험체들의 실험결과를 비교한 결과 외부보강용 원형강봉댐퍼 시스템이 2층 철근콘크리트 골조의 강성과 에너지소산면적을 증가시켜 내진성능을 증가시킴을 확인하였다. 또한 원형강봉댐퍼가 지진 에너지를 소산하여 지진력을 흡수함을 확인하였다.
        4,000원
        7.
        2018.04 구독 인증기관·개인회원 무료
        This study investigates a new type of recentering damper system combining a shape memory alloy bar with initial tension force is proposed to improve the recentering of frictional damper dissipating energy. The recentering damper is a damper device with improved energy dissipation capability as well as a reduction in maintenance and reinforcement cost, and can be said to be a low-cost, high-efficiency damper device conforming to domestic reality. For the implementation of the theoretical mechanism for the recentering damper device, various parameters were selected and the theoretical and detailed design were carried out. In order to verify the design validity of the recentering damper, a high dimensional finite element analysis model was fabricated and analyzed using cyclic load. As a result of comparing and analyzing the behavior response of the recentering damper, it proved its superiority in terms of energy dissipation ability and stability. Based on these results, we propose an optimized system design method of recentering damper.
        8.
        2017.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        As an alternative to coupling beam in shear wall system, application of the damper which can dissipate energy is increasing. In this study, lintel beam type steel damper which is simple to construct and change depending on design load was proposed. Cyclic loading test was conducted to compare reinforced concrete coupling beam and lintel beam type steel damper. The test results showed that lintel beam type steel damper has higher initial stiffness and energy dissipation capacity than reinforced concrete coupling beam.
        4,000원
        9.
        2017.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study develops a new hybrid passive energy dissipation device for seismic rehabilitation of an existing structure. The device is composed of a friction damper combined with a steel plate with vertical slits as a hysteretic damper. Analytical model is developed for the device, and the capacity of the hybrid device to satisfy a given target performance is determined based on the ASCE/SEI 7-10 process. The effect of the device is verified by nonlinear dynamic analyses using seven earthquake records. The analysis results show that the dissipated inelastic energy is concentrated on the hybrid damper and the maximum interstory drift of the SMRF with damping system satisfies the requirement of the current code.
        4,000원
        10.
        2016.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In recent years, an outrigger damper system has been proposed to reduce dynamic responses of tall buildings. However, a study on outrigger damper system is still in its early stages. In this study, time history analysis was performed to investigate the dynamic response control performance of outrigger damper. To do this, a actual scale 3-dimensional tall building model with outrigger damper system has been developed. El Centro earthquake was applied as an earthquake excitation. The control performance of the outrigger damper system was evaluated by varying stiffness and damping values. Analysis results, on the top floor displacement response to the earthquake load, was greatly effected by damping value. And acceleration response greatly was effected by stiffness value of damper system. Therefore, it is necessary to select that proper stiffness and damping values of the outrigger damper system.
        4,000원
        11.
        2016.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        An outrigger damper system has been proposed to reduce dynamic responses of tall buildings. In previous studies, an outrigger damper system was optimally designed to decrease a wind-induced or earthquake-induced dynamic response. When an outrigger damper system is optimally designed for wind excitation, its control performance for seismic excitation deteriorates. Therefore, a smart outrigger damper system is proposed in this study to make a control system that can simultaneously reduce both wind and seismic responses. A smart outrigger system is made up of MR (Magnetorheological) dampers. A fuzzy logic control algorithm (FLC) was used to generate command voltages sent for smart outrigger damper system and the FLC was optimized by genetic algorithm. This study shows that the smart outrigger system can provide good control performance for reduction of both wind and earthquake responses compared to the general outrigger system.
        4,000원
        12.
        2016.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        동조액체감쇠기(TLD)는 에너지 소산장치로써 구조물의 동적응답을 제어하기 위해 개발되었다. TLD는 풍하중에 의한 구조물의 응답을 제어에 매우 효과적임을 보여줬다. 그러나 TLD가 설치된 구조물의 지진응답의 제어에 대해서는 충분한 연구가 이뤄지지 않았다. 이 연구의 목적은 TLD가 설치된 구조물에 여러 동조비와 질량비를 대입하여 지진에 대한 TLD의 성능을 도출하는 것이다. 이러한 목적을 위해, 수치해석 연구가 실시되며, 다른 토양 조건 또한 고려되었다. 그 결과 지진하중에 대한 TLD의 성능은 구조물의 고유주기, 감쇠비에 따라 다르게 나타났다. 또한 TLD의 동조비 다르게 나타남을 알 수 있었다.
        4,000원
        13.
        2016.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, the concept of damped outrigger system has been proposed for tall buildings. But, structural characteristics and design method of this system were not sufficiently investigated to date. In this study, the dynamic response control performance of outrigger damper has been analyzed. To this end, a simplified analysis model with outrigger damper system has been developed. Use the El Centro seismic(1940, NS) analysis was performed. Analysis results, on the top floor displacement response to the earthquake response, did not have a big effect. However, acceleration response control effect was found to be excellent. The increase of outrigger damper capacity usually results in the improved control performance. However, it is necessary to select that proper stiffness and damping values of the outrigger damper system because, the outrigger damper having large capacity is result in heavy financial burden.
        4,000원
        14.
        2014.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        When adjacent tall buildings experience earthquake excitation, structural pounding may happen. In order to mitigate seismic pounding damage to adjacent structures, many studies have been done to date. Tuned mass dampers (TMD) are widely used for reduction of dynamic responses of building structures subjected to earthquake excitations. If a TMD is shared between adjacent buildings and it shows good control performance, it will be effective and economic means to reduce seismic responses of adjacent structures. In this study, control performance of a shared tuned mass damper (STMD) for seismic response reduction of adjacent buildings has been evaluated. For this purpose, two 8-story example buildings were used and multi-objective genetic algorithms has been employed for optimal design of the stiffness and damping parameters of the STMD. Based on numerical analyses, it has been shown that a STMD can effectively control dynamic responses and reduce the effect of pounding between adjacent buildings subjected to earthquake excitations in comparison with a traditional TMD.
        4,000원
        15.
        2014.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, shaking table test was carried out to evaluate the seismic behavior and performance of low-rise reinforced concrete (RC) piloti structures with and without retrofit. The specimens were designed considering the characteristics of existing building with pilotis such as natural period, distribution factor of strength and stiffness between columns and core wall on the first soft story. The test for the non-retrofit specimen showed that damage was concentrated on the stiffer member on the same floor as the core wall failed by shear fracture whereas columns experienced slight flexural cracks. Considering the failure mode of the non-retrofit specimen, the retrofit method using steel rod damper was presented for improving the seismic performance of piloti structures. The results of the test for retrofit specimen revealed that the retrofit method was effective for controlling the damage as the main RC structural members were not destroyed and most of input energy was dissipated by hysteretic behavior of the damper.
        4,200원
        16.
        2014.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The friction damper can be used for improving the seismic resistance of existing buildings. The damper is often installed in bracing members. The energy dissipation capacity of the damping systems depends on the type of the structure, the configuration of the bracing members, and the property of dampers. In Korea, there are numerous low- to mid-rise reinforced concrete moment frames that were constructed considering only gravity loads. Those frames may be vulnerable for future earthquakes. To resolve the problem, this study developed a toggle bracing system with a high density friction damper. To investigate the improvement of reinforced concrete frames after retrofit using the developed damped system, experimental tests were conducted on frame specimens with and without the damped system. The results showed that the maximum strength, initial stiffness and energy dissipation capacity of the framed with the damped system were much larger than those of the frame without the damped system.
        4,000원
        17.
        2013.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this study is to evaluate the effectiveness of the seismic retrofit performance for a reinforced concrete structure with steel damper. The nonlinear static analysis of the RC frame specimens with and without retrofit using the steel damper was conducted and the reliability of the analysis was verified by comparing the analysis and test results. Using this analysis model and method, additional nonlinear analysis was conducted considering varying stiffness and strength ratios between RC frame and steel damper and the failure mode of RC frame. As the result of the study, the total absorbed energy increased and the damage of RC frame was reduced as stiffness and strength ratios increased. The seismic retrofit performance, evaluated by means of the yield strength, increasing ratio of the absorbed energy and damage of the frame, increased linear proportionally with the increase of the strength ratio. In addition, the seismic retrofit performance was stable for stiffness ratios larger than 4~5. The energy absorption capacity of the frame governed by shear failure was better than that of the frame governed by flexure failure.
        4,000원
        18.
        2013.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The paper introduces Multi-Platform Analysis (MPA) for the seismic performance of a structure controlled by Magneto-Rheological (MR) dampers and presents analytical assessment of the effect of MR damper when taking into account nonlinear behavior of the structure. This paper introduces the MR Damper Plugin that can facilitate communication between MATLAB/Simulink and a finite element analysis tool in order to account for more complex inelastic behavior of the structure with MR dampers. The MPA method using the developed MR Damper Plugin is validated with experimental results from the real-time hybrid simulation. By utilizing the proposed MPA method, the three-story RC structure controlled by MR dampers is more realistically modeled and its performance under seismic loads is investigated. It is concluded that MR damper designed for a linear structure is not effective in a nonlinear structure and can overestimate the effect of MR damper. This work is expected to overcome difficulties in the analytical assessment of structural control strategies for complex and nonlinear structures by obtaining more reliable results.
        4,000원
        19.
        2011.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구의 목적은 마찰 감쇠기를 사용한 기존 구조물의 제진보강 설계절차를 제시하는 것이다. 보강된 구조물의 목표 지붕층 변위는 기존 구조물이 급격한 강도의 저감없이 보유내력을 발휘할 수 있는 최대변위를 초과하지 않도록 결정하였다. 보강 구조물의 변위는 비탄성 변위비 제안식을 이용하여 예측하였다. 제안된 방법의 유효성을 검증하기 위하여 80개의 지반운동 데이터를 사용하여 비선형 동적해석을 수행하였다. 해석결과 제안된 방법은 보강 구조물의 지붕층 변위를 정확히 예측할 수 있는 것으로 나타났다.
        4,000원
        20.
        2011.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        현재 건축 및 토목 구조물의 진동제어에 있어서 준능동제어에 대한 연구가 많이 수행되고 있으며 준능동제어 시스템은 수동제어와 능동제어의 장점을 가지고 있다. 최근 적은 전기 에너지로 제어가 가능한 MR 감쇠기가 개발되어 준능동제어 분야에 적용되고 있으며 이러한 MR 감쇠기를 스마트 감쇠기라 불리고 있다. 본 논문에서는 실시간으로 제어가 가능한 MR 감쇠기를 인접한 두 건축물 사이에 설치하여 제어성능을 알아보고자 한다. 또한, groundhook과 skyhook 제어 알고리즘을 결합한 복합제어 모델을 인접한 건축물의 진동제어에 적용하여 복합제어 모델의 제어성능을 알아보고자 한다. 복합제어 모델을 적용하여 인접한 두 건축물의 진동제어 성능을 분석한 결과, 복합제어 모델이 인접한 두 건축물의 진동제어에 매우 효과적인 것을 알 수 있었다.
        4,000원
        1 2 3