검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 9

        1.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The sewer capacity design have been based on the Huff model or the rational equation in South Korea and often failed to determine optimal capacity, resulting in frequent urban flooding or over-sizing. A time distribution of rainfall (i.e., Huff or ABM method) could be used instead of a rainfall hyetograph obtained from statistical analysis of previous rainfalls. In this study, the Huff method and the ABM method, which predict the time distribution of rain intensity, which are widely used to calculate sewage pipe drainage capacity using the SWMM, were compared with the standard rainfall intensity hyetograph of Seoul. If the rainfall duration was 30 minutes to 180 minutes, the rainfall intensity value calculated by the Huff model tended to be less than the rainfall intensity value of the standard rainfall intensity in the initial 5-10 minutes. As a result, more than 10% to 30% of under-design would be made. In addition, the rainfall intensity value calculated by the Huff model from the section excluding the initial 5-10 minutes of rainfall to the rainfall duration was calculated larger than the value using the standard rainfall intensity equation, which would result in an over-design of 10% to 30%. In the case of a relatively long rainfall duration of 360 minutes (6 hours) to 1,440 minutes (24 hours), it showed an lower rainfall intensity of 60 to 90% in the early stages of rainfall, but the problem of under-design had been solved as the rainfall duration time had elapsed. On the other hand, in the alternating block method (ABM) method, it was found that the rainfall intensity at the entire period at each assumed rainfall duration accurately matched the standard rainfall intensity hyetograph of Seoul.
        4,000원
        2.
        2020.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Cured-in-place-pipe(CIPP) is the most adopted trenchless application for sewer rehabilitation to extend the life of the existing sewer without compromising both direct construction and indirect social costs especially applied in the congested urban area. This technology is globally and domestically known to be the most suitable for partial and full deteriorated pipe structure rehabilitation in a sewer system. The typical design of CIPP requires a significant thickness of lining to support loading causing sewage flow interruption and increasing material cost. This paper presents development of a high strength glass fiber composite lining material for the CIPP application and structural test results. The test results exhibit that the new glass fiber composite lining material has 12 times of flexural strength, 6.2 times of flexural modulus, and 0.5 Creep Retention Factor. These test results can reduce lining design thickness 35% at minimum. Even though taking into consideration extra materials such as outer and inner films for actual field applications, the structural capacity of the composite material significantly increases and it reduces 20 percent or more line thickness as compared to the conventional CIPP. We expect that the newly developed CIPP lining material lowers material costs and minimizes flow capacity reduction, and fully replaceable to the conventional CIPP lining materials.
        4,200원
        3.
        2017.04 구독 인증기관·개인회원 무료
        In this study, we suggested the jacking method of small diameter sewer pipe for improving workability of the pipe at the weak ground. The jacking method minimizes the space and time in constructing small diameter sewer pipe. In addition, to use this method do not cause road restrictions during the construction period. In this study, the construction process of the small diameter sewer pipe is explained. In addition, to ensure the safety during construction, the design consideration such as earth pressure and the jacking force of the steel pipe, and safety against boiling of the ground were examined. For verify the safety of this jacking method, it is necessary to carry out an experiment to estimate the safety of main pipe under construction.
        4.
        2017.04 구독 인증기관 무료, 개인회원 유료
        Due to the sewer induced ground subsidence, there is an increasing demand for the advanced visual inspection technique for the existing sewer pipe structures. This study aim to develop a visual inspection device and real-time transmission system of inspection data with precisely evaluated structural and operational conditions of underground sewer pipe structures. In this paper, a high-precision image capturing system that automatically extracts cracks in the large-diameter sewer pipes and sewage culverts with a diameter of 1,000 mm or more, a real-time gas detection sensor for investigator safety were studied. By analyzing the module technology of the visual inspection device, the concept design for system integration was derived, and the real time transmission system of the inspection result was developed to establish the technical basis for the commercialized device. Also the crack detection test using crack calibration was carried out for the proposed image capturing camera system, and the position accuracy using L1 grade GPS module was tested in this study. The inspection technique of the existing structure condition using the visual inspection device in this study can be effectively used for various structures types and advanced composite structures in the future.
        3,000원
        5.
        2017.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was performed to propose the sewer defect scoring, and grading protocols for sewer condition assessment. For this, sewer defect scoring methods were comparatively analyzed and reviewed for four international condition assessment protocols, which are established based on WRc manual. As a result, we proposed a new protocol for sewer condition assessment, in which characteristics of sewer pipes are considered by segment. In reference to the PIM-3, the extent of ground subsidence was adopted to be of importance, and renewal scores increased in accordance with weighting of defects causing structural backfill materials. Also, defect grades of ‘Hole’ were extended to 5 levels of the grading, and ‘Surface Damage’ was excluded in defect assessment. The addition of ‘Buckling’ resulted in reduction of weights in ‘Surface Damage’ and ‘Lining Defects’.
        4,000원
        6.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Sewer condition assessment involves the determination of defective points and status of aged sewers by a CCTV inspection according to the standard manual. Therefore, it is important to establish a reliable and effective standard manual for identifying the sewer defect. In this study, analytic reviews of the CCTV inspection manuals of the UK, New Zealand, Canada and South Korea were performed in order to compare the defect codes and the protocols of condition assessment. Through this, we also established the standardized method for defect code and revised the calculation method of assigning the condition grade. Analyses of the types and frequencies of sewer defects that obtained by CCTV inspection of 7000 case results, showed that the joint defect and lateral defect were the most frequent defects that occurred in Korea. Some defect codes are found to be modified because those did not occur at all. This study includes a proposed new sewer defect codes based on sewer characteristics.
        4,300원
        7.
        2016.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recent frequent occurrence of urban sinkhole brings a need for the periodic inspection of sewer pipelines. Sewer inspection using a CCTV device needs a lot of time and efforts. Many of previous studies which have focused to reduce the laborious tasks are mainly interested in the developments of image processing S/W and inspection H/W. Nevertheless, there has been no attempt to find meaningful information from the existing CCTV images stored by the sewer maintenance manager. In this paper, we carried out a study about the construction of unfolding image of sewer video image. In general, the analysis results show that the image development is judged to have been well represented. It is expected to be a reference to the basic research of panoramic image.
        4,000원
        8.
        2014.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, sewer–pipe constructions replacing deteriorated pipes are currently underway in the downtown area. To resolve many problems in the conventional method of open-cut construction, lining-board system using light-weight GFRP panels is developed. The pultruded GFRP panels can be successfully used for the developed lining-board system as temporary decks and retaining walls in virtue of light weight, high strength and high durability. In this paper, the structural safety and serviceability of the lining-board system are examined through FE analyses and experiments. Further more, a field application of the lining-board system is presented. The field application shows that quality and environment of construction can be significantly improved.
        4,000원
        9.
        2012.02 서비스 종료(열람 제한)
        철근 콘크리트 강성관인 흄관은 현장 시공 후 사용 중 이음부의 누수와 침하로 인해 하수관거로서의 기능이 저하되는 경우가 많이 발생되고 있다. 따라서 하수관거의 경제성, 안전성, 사용성을 극대화하기 위해 개발되는 하수관거 기초는 하수관거 자중과 수압, 상재토압, 도로에 작용하는 하중의 영향을 충분히 견딜 수 있도록 설계 및 제작되어야 한다. 본 연구에서는 기본적인 설계가 완성된 하수관거 기초의 기본형 모델을 범용 구조해석 프로그램인 ABAQUS(2009)와 CAD Mechanical(2011)의 3D 모델링을 사용하여 유한요소 해석 결과와 비교하고, 보다 경제적인 설계를 위한 격벽의 종류와 유무에 따라 발생되는 최대응력을 항복응력과 비교하여 적은 재료로 생산 할 수 있는 하수관거 기초의 최적화된 단면을 파악할 수 있었다. 이를 고려하여 항복응력과 각각의 모델의 최대응력 및 변위를 통해 적절한 단면의 형상을 제시한다. 그림 1은 기본적인 설계가 완성된 CAD 도면과 ABAQUS 입력모델링 단면을 보여주고 있다. 플라스틱 재료(PE2406)의 물성치 정보와 여러 경계조건에 따르는 해석결과를 그림 2에 나타내었다. 그림 2는 하수관거의 크기와 모델, 위치에 따른 최대응력과 항복응력을 비교한 것으로서, 항복응력대비 발생된 최대응력 및 최대변위를 통하여 기초단면의 안전성과 경제성을 판단 할 수 있다.