검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 9

        1.
        2022.05 구독 인증기관·개인회원 무료
        As the design life of nuclear power plants are coming to the end, starting with Kori unit 1, nuclear power related organizations have been actively conducted research on the treatment of nuclear power plant decommissioning waste. In this study, among various types of radioactive waste, stabilization and volume reduction experiments were conducted on radioactive contaminated soil waste. Korea has no experience in decommissioning nuclear power plants, but a large amount of radioactively contaminated soil waste was generated during the decommissioning of the KAERI research reactor (TRIGA Mark- II) and the uranium conversion facility. This case shows the possibility of generating radioactive soil waste from nuclear power plants and nuclear-related facilities sites. Soil waste should be solidified, because its fluidity and dispersibility wastes specified in the notification of the Korea Nuclear Safety and Security Commission. In addition, the solidified waste forms should have sufficient mechanical strength and water resistance. Numerous minerals in the soil are components that can make glass and ceramics, for this reason, glass-ceramic sintered body can be made by appropriate heat and pressure. The sintering conditions of soil were optimized, in order to make better economical and more stable sintered body, some additives (such as additives for glass were mixed) with the soil and sintering experiments were conducted. Uncontaminated natural soil was collected and used for the experiment after air drying. Moisture content, pH, bulk density, and organic content were measured to understand the basic properties of soil, and physicochemical properties of the soil were identified by XRD, XRF, TG, and SEM-EDS analysis. In order to understand the distribution by particle size of the soil, it was divided into Sand (0.05–2 mm) and Fines (< 0.05 mm). The green body was manufactured in the form of a cylinder with a diameter of 13mm and a height of about 10mm. Appropriate pressure (> 150 MPa) was applied to the soil to make a green body, and appropriate heat (> 800°C) was applied to the sintered body to make a sintered body. The sintering was conducted in a muffle furnace in air conditions. The volume reduction and compressive strength of the sintered body for each condition were evaluated.
        2.
        2018.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: The objective of this study is to evaluate the application of soil stabilization method for soft shoulder construction in the iRoad Project of Sri Lanka. METHODS: Firstly, the quantitative analysis of soil strength improvement due to soil stabilization was done for soil samples collected from iRoad construction sites. Two types of soils were selected from iRoad Project sites and prepared for soil stabilization testing by the Road Development Authority. Secondly, the appropriate stabilizer was selected at given soil type based on test results. Two different stabilizers, ST-1 and ST-2, produced in Korea were used for estimating soil strength improvements. Finally, the optimum stabilizer content was determined for improving shoulder performance. The uniaxial compressive strength (UCS) test was conducted to evaluate the strength of stabilized soil samples in accordance with ASTM D 1633. The use of bottom ash as a stabilizer produced from power plant in Sri Lanka was also reviewed in this task. RESULTS: It is found from the UCS testing that a 3% use of soil stabilizer can improve the strength up to 2~5 times in stabilized soft shoulder soils with respect to unstabilized soils. It is also observed from UCS testing that the ST-1 shows high strength improvement in 3% of stabilizer content but the strength improvement rate with increase of stabilizer content is relatively low compared with ST-2. The ST-2 shows a low UCS value at 3% of content but the UCS values increase significantly with increase of stabilizer content. When using the ST-2 as stabilizing agent, the 5% is recommended as minimum content based on UCS testing results. Based on the testing results for bottom ash replacement, the stabilized sample with bottom ash shows the low strength value. CONCLUSIONS: This paper is intended to check the feasibility for use the soil stabilization technique for shoulder construction in Sri Lanka. The use of soil stabilizer enables to improve the durability and strength in soft shoulder materials. When applying the bottom ash as a soil stabilizer, various testings should be conducted to satisfy the specification criteria.
        4,000원
        3.
        2018.05 구독 인증기관·개인회원 무료
        In Sri Lanka, the shoulder in asphalt pavements has been constructed using the materials transported from borrow pit in the iRoad Project due to the low quality of in-situ soils. After excavating 150~200mm thick and 500mm wide shoulder area, the borrow pit materials are placed and compacted according to specifications. The excavated in-situ soils are dumped in designated location. It is estimated that this process of shoulder construction is not economical due to high material transportation cost and can also induce the environmental issues by disposal of in-situ soils. It can also cause distresses such as surface rutting and edge drop-off in soft shoulder section due to bearing capacity failure and off-tracking of vehicle. The heavy rainfall in Sri Lanka can induce severe erosion problem when using the soft shoulder. To improve the strength and durability of pavement shoulders in the iRoad Project, the soil stabilization will be a good alternative to solve the above mentioned problems. The use of in-situ soils with addition of soil stabilizer enables to reduce the construction cost of shoulder section and mitigate the environment issues. The objective of this task is to review the application of soil stabilization method for soft shoulder construction in the iRoad Project. Firstly, the quantitative analysis of soil strength improvement due to soil stabilization was done for soil samples collected from iRoad construction sites. Two types of soils were selected from iRoad Project sites and prepared for soil stabilization testing by the Road Development Authority. Secondly, the appropriate stabilizer was selected at given soil type based on test results. Three different stabilizers, ST-1, ST-2, and ST-3, produced in Korea were used for estimating soil strength improvements. Finally, the optimum stabilizer content was determined for improving shoulder performance. The uniaxial compressive strength (UCS) test was conducted to evaluate the strength of stabilized soil samples in accordance with ASTM D 1633. The use of bottom ash as a stabilizer produced from power plant in Sri Lanka was also reviewed in this task.
        4.
        2011.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 폐금속 광산 주변 비소와 중금속으로 오염된 논토양을 효과적으로 복원하기 위한 안정화 제로써 석회석과 제강슬래그의 처리효과와 그 적용성을 검토하기 위해 담수답의 환원 환경을 적용한 컬럼 실험을 실시하였다. 실험결과 담수된 논토양의 환원 환경에서는 철과 망간 성분이 환원되어 급격하게 용출되는 시점에 중금속 성분도 급격하게 용출되는 경향이 나타났으며, 대조구(무처리)의 경우 침출수에서 오염기준을 초과한 시료가 나타났다. 그러나 석회석 5%와 제강슬래그 5%로 각각 처리한 토양은 모두 오염기준 이하로 대조구보다 중금속 농도가 매우 낮게 검출되었다. 석회석과 제강슬래그 모두 담수답의 환원 환경에서 좋은 처리효과를 나타내어 효과적인 안정화제로 판단되었으며, 특히 제강슬래그는 담수답 환 경에서 지속적으로 증가하는 비소 성분에 대해서 좋은 처리효과를 나타내었다.
        4,500원
        6.
        2017.04 KCI 등재 서비스 종료(열람 제한)
        The purpose of this study was to suggest feasible disposal methods for heavy-metal-contaminated soil or mine tailings through solidification/stabilization. To improve the compressive strength and enhance the heavy-metal stabilization after solidification/stabilization, we used the industrial wastes (oyster shell powder and waste gypsum) and indigenous bacteria as immobilization agents. Three indigenous bacteria were isolated from each heavy-metal-contaminated soil or mine tailing site, and the bacteria were identified by cellular fatty acid composition analysis. The results of cellular fatty acid composition analysis showed that the closest strains of these bacteria are Brevibacillus centrosporus, Lysinibacillus sphaericus, and Bacillus megaterium. To the best of our knowledge, this research was the first report of biomineralization by Brevibacillus centrosporus. As a result of mixing additives with the optimum mixing ratio suggested in this study, the compressive strengths of specimens were satisfied in accordance with the US Environmental Protection Agency (EPA) waste treatment standard after 28 days of aging. Additionally, the results of the Toxicity Characteristics Leaching Procedure (TCLP) and Synthetic Precipitation Leaching Procedure (SPLP) analysis showed the successful immobilization of heavy metals after 28 days of specimen formation for solidification/stabilization.
        7.
        2016.10 KCI 등재 서비스 종료(열람 제한)
        The final goal of this research is to develop a miniaturized botanical biofilter using a wick-typed automatic humidifier for stabilizing soil moisture content (SMC) and purifying indoor air pollutants by the biofilter. This new biofilter equipped with wick-typed automatic humidifier was manufactured as more compacted design removing an absorption tower-typed humidifier compared with the previous big-sized biofilter made in 2015. This study was performed to compare changes of SMCs among floors depending on the number of wicks installed on the humidifier within the novel biofilter, and to compare changes of SMCs and plant growth parameters before and after planting Spathiphyllum wallisii ‘Mauna Loa’ on the biofilter. SMCs among floors depending on the number of wicks were similar, and all regression lines of SMCs showed almost horizontal lines because of long-term stability on SMCs. Comparing plant growth parameters of S. wallisii ‘Mauna Loa’ before planting and at 30 days after planting on the biofilter, all growth parameters were not statistically significant. Thus, SMCs of the biofilter were more stabilized using this humidifying appar
        9.
        2010.02 KCI 등재 서비스 종료(열람 제한)
        A stabilization/solidification (S/S) process for lead (Pb) contaminated soils was evaluated using waste cow bone containing apatite like compounds. Soil samples obtained form firing range were treated with waste cow bone. The effectiveness of stabilization was evaluated based on the Korean Standard Leaching Test (KSLT) and soil pH. The leached concentration reduced with increased in dose of waste cow bone. Overall, the KSLT results showed that Pb concentration in soils are significantly affected by amount of waste cow bone. When soil amended with 20 % of waste cow bone, less than 0.1 mg/kg was leached, and soil pH was increased from 6.5 to 8.4. Same results were obtained when finer waste cow bone was applied. The reachable concentration of Pb in soil showed in inversely proportional to solid/liquid ratio. Aging periods indicate improving mix design was applied. Relatively high lead concentrations was observed at the first 1 days, however leaching profile are reduced significantly over time for all mix designs.