To utilize pepper (Piper nigrum) as an immunostimulatory agent, we isolated macrophage stimulating polysaccharides from pepper and investigated their macrophage activating activities. Hot-water extracts (HW) of black pepper (BP) and white pepper (WP) were prepared, and their macrophage stimulating activities were evaluated using RAW 264.7 cells. BP-HW significantly promoted the secretion of macrophage stimulating factors such as nitric oxide (NO), tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and IL-12 compared to WP-HW. When BP and WP-HW were fractionated into crude polysaccharides (CP) and low molecules (LM) by ethanol precipitation, BP-CP demonstrated significantly more potent activity. Furthermore, BP-CP not only induced mRNA gene expression of macrophage activation factors, but also promoted nuclear localization of p65 and c-Jun. In addition, component sugar analysis revealed that glucan-type polysaccharides in BP-CP played a crucial role in macrophage activation. Taken together, these findings suggest that black pepper has industrial applicability not only as a spice, but also as an immunostimulatory functional material.
The objective of this study was to establish an in vitro culture system for ovarian preantral follicles of B6D2F1. First, we optimized the in vitro preantral-follicle culture by culture duration, follicle stimulating hormone (FSH) type, and activin A concentration. Duration of in vitro culture for 9, 11, and 13 days was sufficient for the normal development of preantral follicles to antral follicles. Formation of cumulus cell–oocyte complex (COC) was induced by treatment with human chorionic gonadotropin (hCG; 2.5 IU/mL) and epidermal growth factor (EGF; 5 ng/mL). In addition, metaphase II (MII) oocytes formed during this in vitro culture of preantral follicles. In vitro preantral-follicle culture for 9 days showed higher rates of growth and maturation, thus yielding a greater number of antral follicles, and there were significant differences (p < 0.05) in the number of MII oocytes (that formed from these preantral follicles via differentiation) between the 9-day culture and 11-day or 13-day culture. The follicles cultured for 9 days contained a tightly packed well-defined COC, whereas in follicles cultured for 11 days, the COC was not well defined (spreading was observed in the culture dish); the follicles cultured for 13 days disintegrated and released the oocyte. Second, we compared the growth of the preantral follicles in vitro in the presence of various FSH types. There were no significant differences in the growth and maturation rates and in differentiation into MII oocytes during in vitro culture between preantral follicles supplemented with FSH from Merck and those supplemented with FSH from Sigma. To increase the efficiency of MII oocyte formation, the preantral follicles were cultured at different activin A concentrations (0 to 200 ng/mL). The control follicles, which were not treated with activin A, showed the highest rate of differentiation into antral follicles and into MII oocytes among all the groups (0 to 200 ng/mL). Therefore, activin A (50 to 200 ng/mL) had a negative effect on oocyte maturation. Thus, in this study, we propose an in vitro system of preantral-follicle culture that can serve as a therapeutic strategy for fertility preservation of human oocytes for assisted reproductive medicine, for conservation of endangered species, and for creation of superior breeds.
Porcine blastocyst’s quality derived from in vitro is inferior to in vivo derived blastocysts. In this study, to improve in vitro derived blastocyst’s quality and then establish porcine ESCs (pESCs), we treated in vitro fertilized (IVF) embryos and parthenogenetic activated (PA) embryos with three chemicals: porcine granulocyte-macrophage colony stimulating factor (pGM-CSF), resveratrol (RES) and β-mercaptoethanol (β-ME). The control group was produced using M199 media in in vitro maturation (IVM) and porcine zygote medium-3 (PZM3) in in vitro culture (IVC). The treatment group is produced using M199 with 2 μM RES in IVM and PZM5 with 10 ng/mL pGM-CSF, 2 μM RES and 10 μM β-ME in IVC. Data were analyzed with SPSS 17.0 using Duncan’s multiple range test. In total, 1210 embryos in PA and 612 embryos in IVF evaluated. As results, we observed overall blastocyst quality was increased. The blastocyst formation rates were significantly higher (p<0.05) in the treatment groups (54.5%) compared to the control group (43.4%) in PA and hatched blastocysts rates in day 6 and 7 were also increased significantly. Total cell numbers of blastocyst were significantly higher (p<0.05) in the treatment group (55.1) compared to the control group (45.6). In IVF, hatched blastocysts rates in day 7 were increased significantly, too. After seeding porcine blastocyst, the attachment rates were higher in the treatment group (36.2% in IVF and 32.2% in PA) than the control group (26.6% in IVF and 19.5% in PA). Also, colonization rates and cell line derivation rates were higher in treatment group than control group. Colonization rates of control group were 10.8% in IVF and 2.4% in PA, but treatment group were 17.75% in IVF, and 13.1% in PA. And we investigated the correlation between state of blastocysts and attachment rate. The highest attachment rate is in hatched blastocyst (78.35±15.74 %). So, the novel system increased quality of porcine blastocysts produced from in vitro, subsequently increased attachment rates. The cell line derivation rates were 4.2% (IVF) and 2.4% (PA) in control group. In treatment group, they were 10.0% (IVF) and 7.2% (PA). We established 3 cell lines from PA blastocysts (1 cell line in control group and 2 cell lines in treatment group). All cell line has alkaline phosphatase activity and express pluri-potent markers. In conclusion, the novel system of IVM and IVC (the treatment of RES during IVM and RES, β-ME, and pGM-CSF during IVC) increased quality of porcine blastocysts produced from in vitro, subsequently increased derivation rates of porcine putative ESCs.
In order to provide the basis for developing practical mouse embryonic stem cells (mESCs) culture method, how the endogenous level of self-renewal-stimulating factor genes was altered in the mESCs by different extracellular signaling was investigated in this study. For different extracellular signaling, mESCs were cultured in 2 dimension (D), 3D and integrin-stimulating 3D culture system in the presence or absence of leukemia inhibitory factor (LIF) and transcriptional level of Lif, Bmp4 and Wnt3a was evaluated in the mESCs cultured in each system. The expression of three genes was significantly increased in 3D system relative to 2D system under LIF-containing condition, while only Wnt3a expression was increased by 3D culture under LIF-free condition. Stimulation of integrin signaling in mESCs within 3D system with exogenous LIF significantly up-regulated transcriptional level of Bmp4, but did not induce transcriptional regulation of Lif and Wnt3a. In the absence of LIF inside 3D system, the expression of Lif and Bmp4 was significantly increased by integrin signaling, while it significantly decreased Wnt3a expression. Finally, the signal from exogenous LIF significantly caused increased expression of Lif in 2D system, decreased expression of Bmp4 in both 2D and 3D system, and decreased expression of Wnt3a in integrin-stimulating 3D system. From these results, we identified that endogenous expression level of self-renewal-stimulating factor genes in mESCs could be effectively regulated through artificial and proper manipulation of extracellular signaling. Moreover, synthetic 3D niche stimulating endogenous secretion of self-renewal-stimulating factors will be able to help develop growth factor-free maintenance system of mESCs.
The present study investigated the effects of follicle stimulating hormone (FSH) and human chorionic gonadotrophin (hCG) on the nuclear maturation of canine oocytes. Oocytes were recovered from mongrel female ovaries in various reproductive states; follicular, luteal or anestrous stage. Oocytes were cultured in serum-free tissue culture medium (TCM)-199 supplemented with various concentrations of FSH (Exp. 1: 0, 0.5, 1.0 or 10 IU) or hCG (Exp. 2: 0, 0.5, 1.0 or 10 IU) or both (Exp. 3: 1 IU FSH + 1 IU hCG) for 72 hr to determine the effective concentration of these hormones, and to examine their combined effect. After maturation culture, oocytes were denuded in PBS containing 0.1% (w/v) hyaluronidase by gentle pipetting. The denuded oocytes were stained with 1.9 μM. Hoechst 33342 in glycerol and the nuclear state of oocytes was evaluated under UV light. More (p<0.05) oocytes matured to MII stage when follicular stage oocytes were supplemented with 1 IU FSH (6.2%) compared with the control, 0.1 or 10.0 IU FSH (0 to 1.2%). Significantly higher (p<0.05) maturation rate to MII stage was observed in follicular stage oocytes supplemented with 1.0 IU hCG (7.2%) compared with the control or other hCG supplemented groups (0 to 1.5%). However, the combination of FSH and hCG did not improve the nuclear maturation rate of canine oocyte (2.4 %) compared with FSH (6.2%) and hCG alone (7.2%). In conclusion, FSH or hCG alone significantly increased the maturation of canine oocytes to MII stage.
The present study aimed at determining the effective dose of Folltropin, a follicle timulating hormone (FSH), on superovulation in indigenous cows of Bangladesh. Fifteen regularly cycling 5~7 years old dry cows, weighing 200~250 kg with 2.5~3.0 body condition scores (BCS) were divided into three groups (n=5). Individual groups were superovulated with 100, 200 or 300 mg of Folltropin per animal. The superovulation treatment was initiated at Day 10 or Day 11 of the estrous cycle (Day 0=day of estrus). Alfaprostol (6 mg) was injected to each cow 72 h after the initiation of superovulation treatment to induce eestrus. After confirming standing estrus, the cows were inseminated 2~3 times, 12 h apart, depending on the duration of estrus. At Day 6 or Day 7, individual horns of the uterus were flushed with 150~200 of phosphate buffered saline supplemented with BSA (0.2%), penicillin (100 IU/) and streptomycin (100 /) using a two-way foley catheter. The embryos were concentrated, removing the excess medium through an embryo filter, and identified under a stereomicroscope. The identified embryos were collected, washed four times, evaluated and graded as excellent, good, fair or poor. The excellent, good and fair embryos were considered as transferable quality embryos. The mean (range). numbers of embryos collected vs. transferable quality embryos far 100, 200 and 300 mg of Folltropin were 4.5 (1~10) vs. 3.5 (1~8); 2.5 (1~4) vs. 1 (0~2) and 0.0 (0~0) vs. 0.0 (0~0), respectively, Folltropin at a dose of 100 or 200 mg produced suitable ovarian stimulation for superovulation in indigenous zebu cows of Bangladesh. A dose of 300 mg or more Folltropin consistently caused preovulatory corpora lutea formation in the ovaries and resulted in zero embryo recovery.