Disheveled is a major regulator of WNT signalling pathway. It has been shown that WNT signaling is important for regulating synaptic plasticity. However, it is not still clear how Dsh is regulating synaptic plasticity. In this study, we used various methods to investigate how Dsh regulates synaptic plasticity. Our further studies will reveal unknown molecular and cellular mechanisms underlying WNT signaling dependent synaptic plasticity.
I conducted experiments in Drosophila to investigate the consequences of altered acetylcholinesterase (AChE) activity in the nervous system. In ace hypomorphic mutant larvae, the amount of ace mRNA and the activity of AChE both in vivo and in vitro were significantly reduced compared with those of controls. Reduced Ace in Drosophila larvae resulted in significant down-regulation of branch length and the number of boutons in Type 1 glutamatergic neuromuscular junctions (NMJs). These defects in ace hypomorphic mutant larvae were suppressed when Musca domestica AChE was transgenically expressed. Because AChE inhibitors are utilized for medications for Alzheimer’s disease, we investigated whether pharmacological inhibition of AChE activity induced any synaptic defects. I found that controls exposed to a sublethal dose of DDVP phenocopied the synaptic structural defects of the ace hypomorphic mutant. These results suggest that down-regulation of AChE activity, regardless of whether it is due to genetic or pharmacological manipulations, results in altered synaptic architecture. This study suggests that exposure to AChE inhibitors for 6-12 months may induce altered synaptic architectures in human brains with Alzheimer’s diseases, similar to those reported here. These changes may underlie or contribute to the loss of efficacy of AChE inhibitors after prolonged treatment.
Substantia gelatinosa (SG) neurons receive synaptic inputs from primary afferent Aδ- and C-fibers, where nociceptive information is integrated and modulated by numerous neurotransmitters or neuromodulators. A number of studies were dedicated to the molecular mechanism underlying the modulation of excitability or synaptic plasticity in SG neurons and revealed that second messengers, such as cAMP and cGMP, play an important role. Recently, cAMP and cGMP were shown to downregulate each other in heart muscle cells. However, involvement of the crosstalk between cAMP and cGMP in neurons is yet to be addressed. Therefore, we investigated whether interaction between cAMP and cGMP modulates synaptic plasticity in SG neurons using slice patchclamp recording from rats. Synaptic activity was measured by excitatory post-synaptic currents (EPSCs) elicited by stimulation onto dorsal root entry zone. Application of 1 mM of 8- bromoadenosine 3,5-cyclic monophosphate (8-Br-cAMP) or 8-bromoguanosine 3,5-cyclic monophosphate (8-Br-cGMP) for 15 minutes increased EPSCs, which were maintained for 30 minutes. However, simultaneous application of 8-BrcAMP and 8-Br-cGMP failed to increase EPSCs, which suggested antagonistic cross-talk between two second messengers. Application of 3-isobutyl-1-methylxanthine (IBMX) that prevents degradation of cAMP and cGMP by blocking phosphodiesterase (PDE) increased EPSCs. Co-application of cAMP/cGMP along with IBMX induced additional increase in EPSCs. These results suggest that second messengers, cAMP and cGMP, might contribute to development of chronic pain through the mutual regulation of the signal transduction.
This study is intended to examine the motor skill learning and treadmill exercise on motor performance and synaptic plasticity in the cerebellar injured rats by harmaline. Experiment groups were divided into four groups and assigned 15 rats to each group. GroupⅠ was a normal control group(induced by saline); GroupⅡ was a experimental control group(cerebellar injured by harmaline); GroupⅢ was a group of motor skill learning after cerebellar injured by harmaline; GroupⅣ was a group of treadmill exercise after cerebellar injured by harmaline. In motor performance test, the outcome of groupⅡ was significantly lower than the groupⅢ, Ⅳ(especially groupⅢ)(p<.001). In histological finding, the experimental groups were destroy of dendrities and nucleus of cerebellar neurons. GroupⅢ, Ⅳ were decreased in degeneration of cerebellar neurons(especially groupⅢ). In immunohistochemistric response of synaptophysin in cerebellar cortex, experimental groups were decreased than groupⅠ. GroupⅢ's expression of synaptophysin was more increased than groupⅡ, Ⅳ. In electron microscopy finding, the experimental groups were degenerated of Purkinje cell. These result suggest that improved motor performance by motor skill learning after harmaline induced is associated with dynamically altered expression of synaptophysin in cerebellar cortex and that is related with synaptic plasticity.
The purposes of this study were to test that complex motor training enhance motor function significantly, to test change in cerebellum, and to test the synaptic plasticity into the immunohistochemistry response of synaptophysin. Using an animal model of fetal alcohol syndrome - which equates peak blood alcohol concentrations across developmental period - the effects of alcohol on body weight during periods were examined. The effect of complex motor training on motor function and synaptic plasticity of rat exposed alcohol on postnatal days 4 through 10 were studied. Newborn rats were assigned to one of two groups: (1) normal group (NG), via artificial rearing to milk formula and (2) alcohol groups (AG), via 4.5 g/kg/day of ethanol in a milk solution. After completion of the treatments, the pups were fostered back to lactating dams, where they were raised in standard cages (two-and three animals per cage) until they were postnatal 48 days. Rats from alcohol group of postnatal treatment then spent 10 days in one of two groups: Alcohol-experimental group was had got complex motor training (learning traverse a set of 6 elevated obstacles) for 4 weeks. The alcohol-control group was not trained. Before consider replacing with "the experiment/study", (avoid using "got" in writing) the rats were examined during four behavioral tests and their body weights were measured, then their coronal sections were processed in rabbit polyclonal antibody synaptophysin. The synaptophysin expression in the cerebellar cortex was investigated using a light microscope. The results of this study were as follows: 1. The alcohol groups contained significantly higher alcohol concentrations than the normal group. 2. The alcohol groups had significantly lower body weights than the normal group. 3. In alcohol groups performed significantly lower than the normal group on the motor behavioral test. 4. In alcohol-control group showed significantly decreased immunohistochemistric response of the synaptophysin in the cerebellar cortex compared to the nomal group. These results suggest that improved motor function induced by complex motor training after postnatal exposure is associated with dynamically altered expression of synaptophysin in cerebellar cortex and that is related with synaptic plasticity. Also, these data can potentially serve as a model for therapeutic intervention.
Angelman syndrome (AS) is a neurodevelopmental disorder characterized by intellectual disability and autism. The genetic cause is the absence of UBE3A, an E3 ubiquitin ligase, from the maternal chromosome which can arise from multiple origins. Recently discovered targets of Ube3a are important for activity dependent changes in synaptic transmission and spine morphology. Plasticity studies in an AS mouse model is important for basic plasticity research with regard to understanding protein homeostasis as well as the search for therapeutic targets for the patients. The progress on synaptic plasticity from this unique disorder is reviewed.