아시아태평양 지역의 석유 제품 수요가 증가함에 따라, 해상에서 화학물질을 운반하는 탱커선의 운항이 늘어나면서 누출 사고 에 대한 우려도 증가하고 있다. 특히, 탱커선에 적재되는 화학물질 중 하나인 LPG는 비수용성이고, 폭발 하한계가 낮아 쉽게 폭발할 수 있기 때문에 해상에서 LPG 가스가 누출될 경우, 선박에서의 1차 사고뿐 아니라 인근 연안 지역으로 확산되어 2차 사고로 이어질 가능성 이 높다. 이에 본 연구에서는 한국해양대학교가 위치한 연안 지역 인근 해상을 운항 중인 화학물질 운반선에서 LPG 가스가 누출되는 상 황을 가정하고, CFD 시뮬레이션을 통해 학교까지 누출된 가스의 확산 범위를 예측하고자 한다. 연구 결과, 선박 위치에 따라 북쪽, 동쪽, 남동쪽 해상을 운항 중인 화학물질 운반선에서 누출된 가스는 각각 8초, 15초, 12초 만에 연안 지역에 도달하여, 전체 면적의 1/4, 1/6, 1/5 만큼 확산되었다. 또한, 선박에 적재된 가스가 모두 누출된 이후에도 연안지역 내 가스 농도는 각각 15초, 33초, 36초 동안 인화성 범위를 유지하였다. 가스 확산에 영향을 미치는 조건을 분석한 결과, 누출구 크기가 풍속보다 더 큰 영향을 미치는 것으로 확인하였다. 본 사례 연구의 해석기법을 활용해, 연안 항로를 운항 중인 선박에서 누출된 유해 가스가 인근 연안 지역에 확산되는 범위를 예측하고, 이를 기반 으로 기존 대응 지침을 보완하는 기초자료로서 활용되기를 기대한다.
선박직원법은 위험화물 취급에 대한 최소자격 요건을 규정하고 있다. 과거에는 케미컬 탱커 직무교육 이수를 위해 필수적으로 승무 경력이 요구되었으나, 2023년 동 법 개정 이후, 승무 경력이 없어도 교육 이수가 가능해졌다. 이에 따라 교육의 성과는 개정 전에 비 해 낮아질 것이라 예상할 수 있다. 본 연구는 케미컬 탱커 직무교육에서 승무 경력 유무에 따른 교육 만족도 차이를 확인하였다. 그 결과, 이수 자격에서 승무 경력이 삭제된 이후 타 선종에서 케미컬 탱커로 이직자의 비율이 늘고, 승무 경력 유무에 따른 교육 만족도는 승무 경력자가 교육 운영, 교육설계, 교육효과, 강사 능력, 현업 적용 모든 측면에서 높은 만족도를 보였다. 특히 현업 적용에서 가장 큰 만족도 차이를 보이고 교육설계에서 가장 낮은 만족도 차이를 보여 주었다. 이에 대한 개선 방안으로 선상 직무교육의 인정, 시뮬레이터를 활용 한 교육 방법 및 승무 경력자와 무경력자의 토의법을 제안한다. 본 연구는 케미컬 탱커 직무교육 과정에서 승무 경력의 유무가 교육효과 에 미치는 실제 영향을 보여 주며, 향후 교육과정의 개선 시 기초자료로 활용될 것이다.
최근, 구조설계 기준 및 평가방법의 전문화로 인하여, 선급 규칙의 통합화가 이뤄졌었다. 그 좋은 일례가 국제공통규칙(CSR, Common Structural Rule)이다. 그러나, 종강도 하중이 크게 작용하는 화물창 구역에만 국한하여 세부규정이 제시되어 있고, 선수와 선미부 구조에는 별다른 평가 지침이 없다. 언급한 구역의 구조설계는 조선사의 설계 경험에 의존하여 진행하고 있으며, 선급에서도 명확한 기준 이 없으므로 구조 손상 문제가 발생하더라도 근본적인 원인을 파악하기가 힘들다. 본 연구에서는 선미부에 주로 발생하고 있는 좌굴 손 상의 대표적인 사례에 대한 근본적인 원인을 파악하기 위한 엔지니어링 기반의 해법을 제시하였다. 유한요소해석 모델링 기반 구조 강도 검증을 위하여, 하중 조건, 경계조건, 모델링 방법 그리고 평가 기준에 대한 합리적인 해법을 제시하였다. 선미부에 작용하는 휨 모멘트에 의하여 높이 방향으로 압축하중에 의해서 좌굴이 발생할 가능성이 있으며, 좌굴 강성 증가를 위하여 판 두께 증가 혹은 수직 보강재의 추 가가 필요하다. 앞으로도 이 결과는 유사 운반선의 선미부 구조 강도 검토 시 도움을 줄 것으로 기대된다.
The decrease in under keel clearance (UKC) due to the increase of draft that occurs during advancing and turning of very large vessels of different types was analyzed based on computational fluid dynamics (CFD). The trim change in the Duisburg test case (DTC) container ship was much smaller than that of the KRISO very large crude oil carrier 2 (KVLCC2). The sinkage of both ships increased gradually as the water depth became shallower. The amount of sinkage change in DTC was greater than that in KVLCC2. The maximum heel angle was much larger for DTC than for KVLCC2. Both ships showed outward heel angles up to medium-deep water. However, when the water depth became shallow, an inward heel was generated by the shallow water effect. The inward heel increased rapidly in very shallow water. For DTC, the reduction ratio was very large at very shallow water. DTC appeared to be larger than KVLCC2 in terms of the decreased UKC because of shallow water in advancing and turning. In this study, a new result was derived showing that a ship turning in a steady state due to the influence of shallow water can incline inward, which is the turning direction.
선박 축계를 구성하는 프로펠러축은 엔진출력, 프로펠러 하중 및 편심추력의 영향으로 인해 거동의 양상이 달라져 선미관 후 부베어링의 국부하중 변화를 일으킴으로써 선미관 베어링 손상의 위험을 증가시킨다. 이를 방지하기 위해 수행된 추진축계 정렬연구는 선급강선규칙을 중심으로 주로 축과 지지베어링간의 상대적 경사각과 유막유지를 최적화 하는데 중점을 두어 진행 되어왔다. 그러나 보다 상세한 평가를 통한 추진축계의 안정성 확보를 위해서는 전타와 같은 급격한 선미유동장 변화에 기인한 과도상태를 포함한 동적상태의 고려가 필요하다. 이러한 관점에서, 본 연구는 50,000 DWT 선박을 대상으로 스트레인 게이지법을 이용하여 밸러스트 흘수 상태에서 정격회전수로 운전 중 대표적 동적 과도상태인 우현 전타상태에서의 프로펠러축 거동이 추진축계에 미치는 영향을 분석하였다. 그 결과 변동된 프로펠러 편심추력은 프로펠러축을 일시적으로 강하게 내려 누르는 힘으로 작용하여 선미관 베어링의 국부하중을 증가시켜 축계 안정성에 부정적 영향을 미침을 증명하였다.