경량한 세장 구조물의 내풍안정성을 향상시키기 위하여 다양한 제진장치가 사용되어 왔다. 제진장치에 의하여 구조물에 부가되는 감쇠는 기존의 질량, 강성에 비례하는 고전감쇠와 달리 비고전 특성을 가진다. 비고전 감쇠는 복소의 모달 특성을 보유하기 때문에 해석과 평가과정에서 모드의 거동을 파악하기 어렵다. 이러한 이유 때문에 복소 모달 변수를 실수로 변경하기 위한 방법이 요구 되며, 변경된 실수 모달 특성이 가지는 물리적 의미를 고찰할 필요가 있다. 본 연구에서는 상태공간에서 비고전 감쇠시스템의 복소 모달 변수를 실수 모달 변수로 변경하는 과정을 소개하고 그 모달변수가 가지는 특성을 분석함으로써 비고전 감쇠를 가지는 구조물의 해석 및 평가가 보다 명쾌한 물리적 의미를 가지고 이루어질 수 있도록 하였다. 또한 비고전 감쇠구조물의 계측응답만으로 실수의 모달 특성을 추정할 수 있는 상태공간 기반 모드분해 기법에 대해서 다루고 그 특성을 비교 검증하였다. 본 연구에서 제시된 기법을 카고메 트러스 댐퍼가 설치된 비고전 감쇠 구조물에 적용하여 수치적으로 검증하였으며, 수치해석 결과로부터 복소 모드형상이 실수공간으로의 변환이 가능하며, 그 실수 모드형상이 계측응답만으로도 추정 가능함을 알 수 있었다.
The research is to verify by experiments whether the steel truss structure is able to withstand the load of cement bricks of upper part of a door for the safe use of lightweight steel truss structure instead of concrete lintel which is to be installed at upper part of door frame in building cement bricks for apartment construction. The steel truss is designed in order not to disturb bricks-building and the shape of structure was verified by bending test. According to experiments result, camber was applied to steel structure that enabled construction work to be improved and was proved effective for the prevention of accidents by cement bricks-building load test.
본 연구는 스페이스 트러스 구조물의 초기 형상을 결정하기 위해 밀도법을 이용한 위상최적화 기술을 고려하고자 한다. 대부분의 초기 형상설계는 다양한 최적화 방법을 활용하지 않고 설계자의 경험이나 시행착오적인 방법을 바탕으로 수행되고 있다. 이런 이유로 합리적이고 경제적인 최적화기술이 초기 형상설계에 도입되어야 한다. 따라서 본 연구에서는 스페이스 트러스 구조물을 대상으로 설계영역을 설정하고 위상최적화를 수행하여 최적의 재료분포를 찾은 뒤 크기최적화를 이용하여 최적부재 크기를 찾고자 한다. 이와 같이 밀도법을 이용한 위상 및 크기최적화를 병행하여 수행할 경우 합리적인 스페이스 트러스 구조물의 초기 형상을 도출할 수 있다.
지진에 의한 구조물의 응답을 저감시키기 위하여 내진, 면진, 제진 등 다양한 장치가 사용되고 있으며 그 중에서 면진장치는 구조물로 전달되는 지진에너지를 최소화하기 위한 시스템으로 그 주된 목적은 구조물의 주기를 길게 만들어 지진파의 탁월주기를 벗어나게 하는 것이다. 본 연구에서는 대공간구조물의 기본적인 동적특성을 가지고 있으며 동시에 가장 간단한 구조이기도 한 아치에 납-고무면진장치와 마찰진자면진장치를 적용하여 지진거동을 분석하였다. 대공간구조물의 지진거동은 일반적인 골조구조물의 지진거동과 달리 수평지진에 의하여 수직방향으로 큰 지진응답이 나타나고 있다. 면진장치를 대공간 구조물에 적용할 경우에 수평지진하중에 의하여 수평방향 지진응답이 저감되는 것은 물론 면진장치의 수직강성으로 인하여 수직응답도 현저하게 저감되는 것을 알 수 있었다.
본 연구에서는 순차 설계영역 (SDD: sequential Design Domain) 개념을 사용한 GUI(Graphic User Interface)환경 프로그램을 개발하였다. 본 프로그램은 상용프로그램인 ANSYS와 최적설계 프로그램인 PLBA(Pshenichny-Lim-Belegundu-Arora)를 연결하고 비주얼 베이직을 이용하여 GUI환경에서 사용자가 초기값과 입력파일을 작성하고 결과를 확인할 수 있도록 하였다. 프로그램의 신뢰도를 검증하기 위해서 3부재 및 5부재 트러스 구조물을 수치예제로 선정하여 해석하였다.
본 논문에서는 시간영역에서의 응답을 이용하여 복잡한 트러스의 구조물에서 발생할 수 있는 손상의 위치와 크기를 추정할 수 있는 알고리즘을 제안하였다. 일정한 시간동안 획득한 응답데이터를 각 부재별 평균 변형에너지를 구하기 위하여 공간적으로 확장하였다. 이렇게 확장된 평균 변형에너지는 다시 손상 지표를 구축하는데 사용하였으며, 손상 지표는 손상 전과 손상 후의 구조물의 강성의 비이다. 본 논문에서 제안한 방법론의 타당성은 유한요소 모델로 손상을 모의하고 이로부터 얻은 응답데이터를 적용하여 입증하였다. 또한 응답데이터에 노이즈를 추가하여 노이즈가 제안한 알고리즘에 미치는 영향도 분석하였다.
The structure system that is discreterized by continuous shells is usually used to make a large space structures and these structures show the collapse mechanisms that are captured at over the limit load, and snap-through and bifurcation are most well known of it. For the collapse mechanism, rise-span ratio, element stiffness and load mode are main factor, which it give an effect to unstable behavior. Moreover, resist force of structure can be reduced by initial condition and initial imperfection significantly. In order to investigate the instability of shell structures, the finite deformation theory can be applied and it becomes a nonlinear mathematics in which use equation of tangential stiffness incrementally. With an initial imperfection, using simple example and Flow Truss Dome, the buckling characteristics of space truss is main purpose of this paper, and unstable behavior is studied by proposed the numerical method. Also, by using MIDAS, this research work analyzes displacements and inner forces as the design load of model, and the ratio of buckling load of design load is investigated.