우리나라 800 ps급 쌍끌이 저인망어선에서 사용할 수 있도록 덴마크에서 이미 보편적으로 사용하고 있는 사용하고 있는 쌍끌이 중층 트롤 어구를 Tauti의 어구비교법칙과 예인수조의 크기 등을 고려하여 1/30의 크기로 축소 제작하여, 이 모형어구에 대한 기본 성능을 알아보기 위해 예인속도 0.46~1.15m/sec(실물환산 2~5k't), weight 142g(실물환산 640kg)에 Front weight 15.5~62.0g(실물환산 70~280kg) 및 양선간격 5~8m(실물환산 150~240m)의 변화에 따른 모형어구의 망고, 망폭, 예인장력, 예망수축 등을 측정 분석하여 실물로 환산한 결과를 요약하면 다음과 같다. 1. 망고는 예인속도 2k't, Front weight 280kg, 양선간격 150m 일 때 32m로 가장 높게 나타났으며, 예인속도 5k't, Front weight 70kg, 양선간격 240m 일 때 6m로 낮게 나타났다. 2. 망폭은 예인속도 5k't, Front weight 70kg, 양선간격 240m 일 때 45m로 가장 넓게 나타났으며, 예인속도 2k't, Front weight 280kg, 양선간격 150m 일 때 33m로 가장 좁게 나타났다. 3. 예인장력은 예인속도 5k't, Front weight 280kg, 양선간격 240m일 때 10,000kg로 가장 크게 나타났으며, 예인속도 2k't, Front weight 70kg, 양선간격 150m 일 때 1,600kg로 가장 작게 나타났다. 4. 어구의 예망수층은 예인속도 2k't, Front weight 280kg, 양선간격 150m 일 때 38m로 가장 깊게 나타났으며, 예인속도 5k't, Front weight 70kg, 양선간격 240m 일 때 6m로 가장 얕게 나타났다. 5. 어구의 망구면적은 예인속도 2k't, Front weight 280kg, 양선간격 180m 일 때 1,100m 상(2)로 가장 크게 나타났으며, 예인속도 5k't, Front weight 70kg, 양선간격 240m 일 때 250m 상(2)로 가장 작게 나타났다
A model experiment on the pair midwater trawl net applicable to 800 PS class Korean pair bottom trawlers was carried out in the special-prepared experimental thank. the tank was prepared as a reverse trapezoid shape in its vertical section by digging out flat soil. The dimension of the tank showed the 9.6 W×43.0 L(m) of the upper fringe and the 4.8 W×38.0 L(m) of the bottom with 3.0m in depth. The depth of water was maintained 2.7m during experiment. The model net was prepared based on the Tauti's similarity law of fishing gear in 1/30 scale considering the dimension of the experimental tank. Mouth performance of the model net during towing were determined by the photographs taken in front of the net mouth with the combinations of towing velocity, warp length and distance between paired boats. The results obtained can be summarized as follows: 1. Vertical opening of the model nets A and B was varied in the range of 0.18~0.88 m and 0.21~0.78 m (which can be converted into 5.4~26.4m and 6.3~23.4 m in the full-scale net) respectively, and was varied predominantly by towing speed. Vertical opening (H which is appendixed m for the model net. f for the full-scale net. A and B for the types of the model net) can be expressed as the function of towing velocity〈TEA〉Vtas in the model net 〈TEA〉〈/TEX〉Vt〈/TEX〉 : m/ sec)〈TEA〉HmA=1.67〈TEA〉〈/TEX〉e-1.65Vt〈/TEX〉 〈TEA〉HmB=1.15〈TEA〉〈/TEX〉e-1.13Vt〈/TEX〉, in the full-scale net (〈TEA〉Vt : k't) 〈TEA〉〈/TEX〉HfA〈/TEX〉=50.27〈TEA〉e-0.37Vt 〈TEA〉〈/TEX〉HfB〈/TEX〉=34.46〈TEA〉e-0.26Vt. 2. Horizontal opening of the model nets An and b was varied in the range of 1.03~1.54m and 1.04~1.55 m (which can be converted into 30.9~46.2 m and 31.2~46.5m in the full-scale net) respectively, and was varied predominantly by distance between paired boats. Horizontal opening (W, appendixes are as same as the former) an be expressed as the function of distance between paired boats 〈TEA〉〈/TEX〉Db〈/TEX〉as in the model net 〈TEA〉WmA=0.69+0.09〈TEA〉〈/TEX〉Db〈/TEX〉 〈TEA〉WmB=0.73+0.09〈TEA〉〈/TEX〉Db〈/TEX〉, in the full-scale net 〈TEA〉WfA=20.81+0.09〈TEA〉〈/TEX〉Db〈/TEX〉 〈TEA〉WfB=22.11+0.09〈TEA〉〈/TEX〉Db〈/TEX〉 3. Net opening area of the model net A and B was varied in the range of 0.28~1.04 〈TEA〉m2 and 0.33~0.94〈TEA〉〈/TEX〉m2〈/TEX〉(which can be converted into 252~936〈TEA〉m2 and 297~846〈TEA〉〈/TEX〉m2〈/TEX〉 in the full-scale net) respectively, and was varied predominantly by towing velocity. Net opening area (〈TEA〉S, appendixes are as same as the former) van be expressed as the function of towing velocity〈TEA〉〈/TEX〉Vt〈/TEX〉 as in the model net 〈TEA〉vt : m/sec) 〈TEA〉〈/TEX〉SMa〈/TEX〉=2.01〈TEA〉e-1.54VT 〈TEA〉〈/TEX〉SmA〈/TEX〉=1.40〈TEA〉e-1.65Vt, in the full-scale net (〈TEA〉Vt : k't) 〈TEA〉〈/TEX〉SfA〈/TEX〉=1.807〈TEA〉〈/TEX〉e-0.35Vt〈/TEX〉 〈TEA〉SfA=1.265〈TEA〉〈/TEX〉e-0.24Vt〈/TEX〉. 4. Filtering volume of the model nets A and B was varied in the range of 0.32~0.55 〈TEA〉m3 and 0.37~0.55〈TEA〉〈/TEX〉m3〈/TEX〉(which can be converted into 8.640~14.850 〈TEA〉m3 and 9.990~14.850〈TEA〉〈/TEX〉m3〈/TEX〉in the full~scale net) respectively, and was predominantly varied by towing speed. filteri..
등분포 열 하중으로 좌굴되고 단순 지지된 준 등방성 직사각형 복합재 평판의 자유진동 해석에 관한 연구를 수행하였다. Von Karman형 비선형 변형도 성분을 1차 전단변형 평판이론에 적용하여 유한요소법으로 후 좌굴 해를 구하였으며 Duhamel-Newman형 탄성이론이 아울러 적용되었다. 후 좌굴 해석으로부터 계산된 변위를 이용하여 좌굴된 평판의 강성을 재평가한 후, 고유치 문제인 자유진동 해석을 수행하였다. 준 등방성 [.+-.45/0/90]s 직사각형 평판의 폭 대 두께비 및 폭 대 길이비를 변화시켜 이들 설계변수가 평판의 자유진동 특성에 미치는 영향을 분석하였다.
We have reviewed three different techniques to estimate molecular cloud mass, and discussed the uncertainties involved. We found that determination of the most important parameter, the 13CO 13CO abundance, is not very sensitive to the real LTE conditions, and that any possible error in deriving LTE column density may not introduce an error in the total gas column density, as far as the visual extinction is established for the object cloud. The virial technique always endows the largest mass estimate as there are several uncertainties, even if the cloud is in virial equilibrium. The strong indicator of the cloud perturbation is the centroid velocity dispersion. The mass using CO luminosity is based on the empirical law, but weakly dependent on the virial assumption, thus it still gives a larger mass estimate. The mass discrepancy is likely to be inevitable, and a factor of two or three difference between mass estimates could easily be attributed to the uncertainties mentioned above. The LTE mass estimate may be the most reliable one if we use the relation visual extinction and 13CO 13CO column density of the object cloud, and the intercept is included.