2015년에 UNFCCC(United Nations Framework Convention on Climate Change)에서 채택된 파리기후변화협약(Paris Agreement)은 195개국의 당사국들이 온실가스 배출을 감축해야 하는 목표와 실행계획이 담겨 있으며, 우리나라는 2030년 온실가스 배출전망치(BAU, Business As Usual) 대비 37%를 감축 목표로 약속하였다. 현재 우리나라의 이산화탄소 배출량은 2015년 기준으로 세계 8위로서 에너지 다소비 국가에 속한다. 우리나라가 채택한 온실가스 배출량 감축 목표를 달성하기 위해서는 최대 15.2조 원에 달하는 GDP 손실을 동반하기 때문에 단계적인 감축의 필요성이 시급하다. 우리나라의 메탄가스 배출량은 2014년 기준으로 26.6백만 톤 CO2eq 수준으로 이중 약 27%(7.3백만 톤 CO2eq)가 폐기물 매립지에서 유출된다. 국내에서는 230개소의 매립지 중 17개의 시설에서만 매립 가스 자원화 시설이 운영되고 있으며, 발생하는 메탄의 약 29% 만이 에너지원으로서 자원화되고 있다. 또한, 현재 중・소규모의 매립지에서의 메탄은 저농도로 발생하기 때문에 일반적으로 대기 중에 무분별하게 방출되고 있는 현실이다. 국내에서 사용하고 있는 규모별 메탄가스의 처리기술은 바이오 가스발전, 연소처리, 메탄 산화 등이 있으며, 경제성을 비교하였을 시 매립지 규모에 상관없는 생물학적 산화기술이 연소처리보다 저비용으로 메탄을 처리할 수 있다. 위와 같이 현재 생물학적 산화 기술의 필요성이 확대되는 반면에 호기성 메탄산화균의 군집분포 특성에 관한 세부적인 연구는 미흡한 실정이다. 따라서 본 연구에서는 매립토에 함유되어있는 메탄산화균에 의한 메탄산화속도를 GC를 통해 비교 측정하여 그 중 산화 속도가 가장 우수한 토양을 선정하여 16s rRNA 염기서열 분석법을 통해 형성되어 있는 미생물의 군집을 분석함으로써 추후 메탄산화균의 기초자료가 될 수 있을 것으로 기대된다.
유엔기후변화협약(UNFCC)은 온실가스 배출통계의 중요성을 강조함에 따라 모든 당사국들은 국가 온실가스 인벤토리 산정 보고서를 제출할 의무를 명시하고 있다. 국가 온실가스 인벤토리 분야에는 폐기물 분야도 포함되어 있으며, 특히 메탄배출량의 상당량을 차지하는 폐기물매립지에 대한 온실가스 배출량 산정은 매우 중요시되고 있다. 그럼에도 불구하고 국내 폐기물매립지는 아직까지 GPG(Good practice guidance) 2000에 기반하여 온실가스 배출량을 산정하고 있어 2006 IPCC 가이드라인을 기준으로 매립지 온실가스 배출량을 산정하고 있는 미국과 EU 국가 등과 비교하여 배출량 산정의 정확도가 낮은 문제점을 나타내고 있다. 이에 본 연구에서는 GPG 2000과 2006 IPCC 가이드라인(Tier 1, 2)을 기반으로 국내 폐기물매립지의 온실가스 배출량을 산정 및 비교함으로써 폐기물매립지 온실가스 배출량 산정방법의 문제점 및 개선방향을 제시하고자 하였다. 각 방법별 폐기물매립지의 국가 온실가스 배출량 산정 결과, 2015년 기준으로 2006 IPCC Tier 1의 배출량은 10,885 Gg CO2eq,로 가장 높게 나타났으며, 다음으로 2006 IPCC Tier 2(9,443 Gg CO2eq,), GPG 2000(7,727Gg CO2eq)순으로 나타났다. GPG 2000과 2006 IPCC 가이드라인 모두 FOD 모델을 기반으로 하고 있기 때문에 연도별 배출량 증감은 비슷하였으나 GPG 2000은 매립폐기물 전부를 하나의 단일 성상으로 가정한 반면 2006 IPCC에서는 폐기물 성상별로 배출계수를 적용하도록 하고 있어 배출량의 차이가 발생하였다. 다만 2006 IPCC에서는 국가 배출계수의 적용을 권고하고 있어 향후 이에 대한 지속적 개발 및 검증이 이루어져야 할 것이다.
최근 환경문제로 인하여 비위생 매립폐기물의 처리문제가 사회적 큰 이슈가 되고 있으므로 이에 대한 친환경적 및 적정한 처리뿐만 아니라 환경단체나 언론 등에 대해서도 적극적으로 대처하고 대기 및 환경감시와 함께 토양, 지하수 오염 등에 대해서도 지속적으로 관리하는 종합적인 사후관리 및 종료가 필요하다. 사후관리 매립장에 대해서는 정비지침의 안정화도 조사기법에 의거하여 시설물현황 및 주변 환경오염도 등 관계법령이 정하는 방법에 따라 시설물에 대한 안정성 해석 등의 연구를 수행하여 사후관리 매립지에 대한 친환경적이고 안정적인 검사 관리를 통하여 지역 주민의 불안 및 갈등을 해소하는 등의 환경복지를 구현하여야 한다. 특히, 강원도 생태·경관보전지역 이전 인근 군부대, 주민들이 투기한 것으로 추정되는 매립폐기물로 인한 환경적 문제점을 사전에 예측, 평가함으로써, 토지보전 및 경관저하의 환경피해와 안전사고를 사전에 방지하고 현 상태에 대한 환경안전진단 및 향후 적정한 사후관리방안을 수립하여 방향을 제시하고자 한다. 본 연구에서는 사용종료 매립장에 대한 정비지침의 안정화도 조사기법에 의거하여 강원도 생태・경관보전지역내 해안사구에 매립된 폐기물의 매립심도 및 면적, 매립용량 등의 매립부지에 대한 실태를 실시하고 폐기물 매립부지에 대하여 현재 환경적 오염잠재력(매립폐기물, 매립가스, 침출수, 지하수, 지표수, 토양 등) 및 구조적 안정성(침하, 지지력 등)을 조사/분석하여 주변 환경오염도와 매립폐기물 안정화정도를 조사함으로써 사용종료 매립지의 정비 및 안정화 방안을 평가하였다.
고도의 산업발달과 그에 따른 경제규모의 팽창은 방대한 양에 달하는 각종 유해물질의 발생을 가져왔으며 결국 이에 대한 처리능력의 한계와 함께 심각한 환경오염문제를 야기하고 있다. 특히, 악취 및 VOC 등은 규제가 강화됨에 따라 좀 더 엄격한 관리가 요구되고 있다. 이중에서 폐기물 매립장, 석유화학공업, 바이오가스정제 시설, 암모니아공업, 하수처리장 등 광범위하고 다양한 곳에서 발생하고 있는 황화수소(H2S)는 달걀 썩는 냄새가 나는 무색의 유독한 악취가스로 인체의 위장이나 폐에 흡수되어 질식, 폐 질환, 중추신경마비 등을 일으키는 위해성이 큰 기체로 분류되고 있어 이의 효율적인 처리방안 모색이 당면한 과제로 부각되고 있다. 한편, 우리나라의 정수처리장에서 발생하는 정수슬러지는 정수장의 증설 및 상수도 보급율의 증가, 고도정수처리시설의 도입 등으로 계속 증가되고 있다. 이들의 처리는 대부분 매립과 해양투기에 의존해 왔으나 기존 매립장의 포화에 따른 새로운 부지확보의 어려움, 침출수배출에 따른 민원발생등의 문제를 안고 있으며, 런던협약에 따라 2007년부터 해양투기가 금지됨에 따라 새로운 정수슬러지처리의 필요성이 고조되면서 친환경적이고 경제성있는 정수슬러지 활용기술개발이 시급히 요청되고 있다. 본 연구에서는 정수슬러지를 소재로 수열반응 및 약품을 첨가하여 슬러지흡착제를 제조하고, 이에 대한 물성분석과 재생특성을 평가하였다. 물성분석은 화학적인 성분 분석과 BET, SEM분석을 토대로 하였다. 슬러지흡착제의 재생은 활성처리를 통해 이뤄졌으며, 재생성능실험은 황화수소를 대상으로한 batch식 흡착평형실험을 통해 실시하였다. 실험결과, 정수슬러지는 활성처리과정을 통해 기공의 확대와 함께 비표면적이 증가되는 것을 알 수 있었다. 또한, 슬러지흡착제를 활성처리하여 재생시킬 경우 악취(황화수소)에 대한 흡착능이 30~40% 범위에서 복원되는 것으로 나타나 재활용이 가능할 것으로 판단되었다.
본 연구는 원유로부터 정제된 파라자일렌(Para Xylene)을 원료로 테레프탈산(TPA: Terephthalic acid)을 생산하는 공정에서 배출되는 저순도 테레프탈산 잔사인 CTA(Crude Terephthalic acid)의 악취저감을 위한 저감제 개발과 유기성슬러지의 고형연료 활용 방안에 관하여 연구하였다. TPA 석유화학 공정에서 발생되는 TPA 슬러지의 발생량은 0.3~0.4%/kg이며, 슬러지는 보관 또는 운송, 소각 과정에서 끊임없이 악취를 발생시키며 대기환경에도 많은 영향을 끼친다. 이러한 악취로 인해 고효율의 열량을 가졌음에도 화력발전소의 연료로 이용하지 못하고 있는 실정이다. 악취저감제는 탄소수가 많은 고지방산과 비이온계면활성제 등을 일정 조성비로 혼합하여 실험하였고, fatty acid 15~30, mono fatty acid 20~35, linolenic acid 20~35, oleic acid 20~25, palmitic acid 5~10, non0ionic surface active agent 5~7% 구성성분 조성비를 갖는다. TPA 유기성 슬러지를 고형연료로 활용하기 위해 고형연료 품질시험에 따른 전 망목에 대해 실험하였다. 고형연료 샘플 500g을 기준으로 TPA 슬러지와 TPA 슬러지에 애쉬 10%를 첨가한 시료 각 두 종류에 대하여 실험한 결과 저위발열량 기준 3,960과 3,540 kcal/kg으로 각각 나타나 고형연료제품 품질기준 3,500 kcal/kg 이상을 만족하여 활용가치가 높은 것으로 나타났다. 또한 염소 0.03%, 황분・수은・카드늄・납・비소・안티몬 불검출, 크롬 45.4mg/kg, 코발트 5,400 mg/kg, 구리 145 mg/kg, 망간 1,300 mg/kg, 니켈 44.4 mg/kg, 탈륨・바나듐 불검출로 나타났다. 악취저감을 위한 pilot-plant는 그림 1과 같이 구성하여 실험하였고, 악취저감제는 0~25% 슬러지 중량비로 주입하여 처리특성을 조사였다.
바이오매스는 지속가능한 에너지원의 일종으로 다양한 공정에 따라 바이오 에탄올, 바이오 디젤, 바이오 가스 등으로 회수하여 석유자원의 대체제로 사용 가능하다. 그 중 목질계 바이오매스는 주로 셀룰로오스, 헤미셀룰로오스, 리그닌으로 이루어져 있으며, 셀룰로오스는 바이오 에탄올 등의 연료화를 통해 이용되고 있으나, 리그닌의 경우 펄프 공정 내 부산물로 여겨져 단순 연소를 통한 열에너지원으로서의 역할을 하고 있다. 하지만 리그닌은 자연에서 가장 많이 존재하는 페놀성 고분자 화합물의 일종으로, 이를 이용한 페놀 수지, 에폭시 수지, 접착제 등의 화학약품화 및 탄소섬유로 소재화하는 등의 리그닌 부가가치화 연구사례가 많아지고 있다. 본 연구 대상인 폐목재는 2015년 기준 연간 약 170만 톤이 발생하고 있으며 약 70%가 재활용되어지고 있으나, 3등급 폐목재의 경우 가공과정에서 페인트, 기름, 방부제, 접착제 등 다량의 불순물이 함유되어 재활용 시 많은 제약을 두고 있다. 이러한 폐목재의 특성을 고려한 재활용 방안에 대한 연구의 필요성이 존재한다. 본 연구는 3등급 폐목재를 대상으로 organosolv 전처리법을 이용한 최적 리그닌 분해 조건 도출 및 UF/NF 멤브레인 시스템 적용을 통한 폐목재 내 목적으로 하는 분자량을 가진 리그닌의 고순도 분리 추출을 목적으로 하고 있다. 또한 분리된 리그닌의 FT-IR, NMR, TGA 분석을 통해 폐목재 리그닌의 재활용 가능성을 검토해보고자 한다.
가죽제품 제조 산업으로부터 발생되는 피혁폐기물의 양은 투입되는 원료 가죽의 약 50%를 차지하는 것으로 알려져 있다. 그러나 이들 피혁폐기물은 적절한 처리 방법이 개발되지 않아 대부분 매립이나 소각을 통해 처리되고 있다. 특히, 매립이나 소각을 통한 처리는 단가가 높아 관련 산업의 경제성을 악화시키고 고형폐기물의 친환경적 처리 관점에서 문제점이 제기되고 있는 실정이다. 최근 화석연료를 대체하기 위한 신규에너지원의 중요성이 높아짐에 따라, 폐기물을 이용한 에너지화에 많은 연구가 진행되고 있으며, 피혁폐기물은 주로 단백질과 지질로 구성되어 있는 특성으로 인해 혐기성소화를 통한 바이오가스 생산이 가능한 것으로 알려져 있다. 그러나 일반적으로 알려져 있는 혐기성소화 공정의 최적 C/N 비 (20-30)를 고려할 때, 피혁폐기물의 높은 C/N비 (약 35)는 공정의 제한요소가 될 수 있다. 본 연구에서는 피혁폐기물과 음폐수를 통합하여 혐기성소화를 실시함으로써 기질의 C/N 비 조절이 혐기성소화 효율에 미치는 영향을 관찰하였다. 기질의 C/N 비 조절을 통한 혐기성소화 효율의 변화는 BMP (Biochemical methane potential) test를 약 40일간 진행하였으며, 바이오가스 발생량을 비교하였다. 실험은 경기도 동두천시에 위치한 가죽제품 제조업체로부터 수거된 pelt scrap과 양주시에 위치한 음식물쓰레기 자원화시설에서 발생되는 음폐수를 각각 채취하여 사용하였다. 개별 기질의 C/N 비는 피혁폐기물이 34.1, 음폐수가 13.5로 확인되었으며, 이들의 무게에 따른 혼합비를 조절하여 통합 혐기성소화 기질의 C/N 비를 20, 25, 30으로 맞춰 실험을 진행하였다. 실험결과 기질을 통합하여 C/N 비를 조절한 소화 조건에서 개별 기질의 단독소화 조건보다 많은 바이오가스 생산량이 관찰되었으며, C/N 비 20에서 바이오가스 생산량이 높은 것으로 나타났다. 이는 통합 기질의 C/N 비 조절효과와 함께 피혁폐기물에 비해 생분해도가 높은 음폐수 함량이 기질의 C/N 비가 낮을수록 더 많이 포함되었기 때문으로 판단된다.
바이오가스의 고질화 공정에서는 필수적으로 메탄의 손실이 발생하게 된다. 특히 기체분리막을 이용한 바이오가 고질화는 타 공정에 비해 경제적이라는 장점이 있지만 메탄 손실율이 높은 편이다. 메탄 손실율이 줄이기 위해서는 고선택도의 분리막 모듈이 요구된다. 분리막을 이용한 바이오가스 고질화 공정에서 메탄손실율이 높은 이유는 CO2에 의한 가소화(Plasticization)으로 CH4의 투과도가 증가하기 때문이다. Cellulose계열의 고분자는 CO2 가소화에 대한 영향이 적기 때문에 CA(Cellulose Acetate)를 사용하여 고선택도의 분리막 개발이 가능하다. 따라서, 투과도가 높은 막을 개발하기 위해 도프용액의 농도와 에어갭(Evaporation time)을 변화시키면서, CA의 두께와 기공을 조절하여, 고선택도의 CA 분리막을 제막하였다. 비용매 유도상 분리법(NIPS, nonsolvent induced phase separation)을 이용하여 제막하였다. 실험에 사용된 Eastman사의 CA를 더 이상 정제하지 않고 그대로 사용하였으며, 도프용액은 다성계로 중합체(polymer), 용매(solvent), 비용제(nonsolvent)를 혼합하여 분리막을 방사하였다. CA의 함량이 증가할수록 active layer 층이 두꺼워지므로 분리막의 선택도가 증가하는 경향을 보였다. 하지만, CA함량이 증가할수록 support layer의 다공층이 줄어들게 되고 active layer층이 두꺼워지므로 투과도도 함께 줄어들게 된다. CA 21wt%에서의 메탄의 투과도와 선택도는 1.3 GPU 및 33.0이였으며, CA 25wt%에서의 메탄 투과도와 선택도는 0.1 GPU 및 43.6으로 고선택도 분리막을 제막하였다.
최근 화석에너지의 한계성에 따른 에너지 위기를 대비하여 석유대체연료의 필요성이 강조되고 있다. 석유대체 연료에는 바이오디젤, 바이오에탄올, 유화연료유 등이 있다. 이 중 유화연료유는 중유, 물, 유화제를 혼합하여 제조한다. 유화연료유의 입자는 미세한 수분입자가 기름 속에 함유되어 있는 유중수적(water in oil) 형태를 가진다. 기름보다 비등점이 낮은 유중수적의 수분입자는 기화에 의해 체적팽창을 일으켜 기름의 미세화를 유도한다. 미세화에 의해 비표면적이 커진 기름은 산소와 혼합이 유리하게 되어 완전연소를 유도한다. 그 결과, 연소효율의 증대, 연소 미립자 생성 억제, 공해물질 생성 억제 등의 이점을 가져온다. 본 연구에서는 유화연료유의 재료인물과 유화제를 대신하여 축산폐기물인 돈뇨와 B-C유를 혼합한 유화연료유의 생산을 검토하였다. 유화연료유의 생산에서 돈뇨를 이용할 경우, 돈뇨 처리의 비용적 부담을 줄여줄 것이다. 또한 돈뇨의 특정 성분은 물과 유화제보다 유수분리를 지연시켜, 품질 좋은 유화연료유를 생산할 수 있을 것으로 사료된다.
하수처리시설의 방류수 수질기준은 계속적으로 강화되고 있으며, 이러한 기준을 충족시키기 위해 다양한 공법을 적용하려는 노력들이 증가하고 있다. 지금까지는 질소, 인 처리를 목적으로 활성슬러지 공법을 많이 적용해왔지만, 활성슬러지 공법의 경우 용존산소 및 온도 유지, 미생물의 생장에 필요한 탄소원이 부족할 경우 추가적인 메탄올 공급의 필요 등과 같은 문제점들을 가지고 있어 대안책이 필요한 상황이다. 따라서 본 연구에서는 응집제 주입을 통해 유기물 뿐만 아니라 질소, 인 등을 제거하여 활성슬러지 공법을 대체할 수 있는 응집-침전 1차 처리(Chemically enhanced primary treatment, CEPT)의 최적화 과정을 진행하였으며, 추가적으로 CEPT 슬러지를 이용하여 혐기성 소화를 진행하였을 때 메탄 생성효율에는 어떠한 영향을 미치는지 확인하고자 하였다. 먼저 문헌조사를 통해 총 7개의 후보군(FeCl2, FeCl3, FeSO4, PACl, Al2(SO4)3, 키토산, glucan)을 선정하였으며, jar-test를 통해 응집제로써의 적용가능성 및 최적 주입량을 확인하였다. Jar-test의 경우 광주 제 1하수처리장으로 들어오는 하수 원수 500ml를 이용하여 진행하였으며, 급속교반(150rpm, 1분), 완속교반(40rpm, 10분), 침전(10분) 순으로 진행한 뒤 상징액을 통해 저감효과를 확인하였다. 90% 이상의 탁도 저감효과를 보인 FeCl3, PACl, Al2(SO4)3 대상으로 CEPT 슬러지를 제작하여 혐기성 소화를 진행하였다. jar-test에서는 PACl이 응집제 주입량 대비 가장 높은 탁도저감효과를 보인 반면, 혐기성 소화 공정에서는 PACl을 이용하여 제작한 CEPT 슬러지의 메탄 발생효율이 가장 낮고, FeCl3를 주입한 경우에 가장 메탄발생효율이 높은 것으로 나타났다. 이러한 결과는 PACl의 Al 성분이 미생물의 생장을 저해한 반면, FeCl3의 경우에는 Fe3+가 Fe2+로 환원되는 과정에서 유기물로부터 H+를 받아 유기물의 분해속도를 촉진시켰기 때문인 것으로 추측된다.
하수처리과정에서 발생하는 슬러지의 부피를 줄이는 동시에 이들의 유기물 성분을 메탄 등의 바이오가스로 전환하기 위해 중온(35℃)에서의 혐기소화 공정이 널리 적용되고 있다. 혐기소화공정의 안정성이나 에너지 투입량 측면에서는 중온혐기소화가 적합하다고 알려져 있지만, 높은 유기물 부하량(organic loading rate, OLR)을 처리하기 위해 반응속도를 상승시키거나 SRT(sludge retention time)을 줄이기 위해 고온(55℃) 혐기소화를 적용하기도 한다. 고온 혐기소화공정을 새롭게 시작할 때 접종물을 기존의 고온 혐기소화공정으로부터 얻기 힘든 경우 중온혐기소화액을 고온에서 적응시켜 접종하기도 한다. 이때 온도를 적응시키는 방법에 따라 공정 효율이 달라지는데, 연구에서는 중온혐기소화액으로부터 고온 혐기소화 접종물을 제작하기 위한 방법으로 온도를 올리는 방법을 달리하였을 때 이들의 메탄 생산과 미생물 군집에 미치는 영향을 살펴보고자 하였다. 본 연구수행을 위해 광주 제 1 하수처리장에서 중온혐기소화액, 1, 2차 농축 슬러지 등을 샘플링 하여 두 대의 반응기(Working volume : 3L)를 설치하여 회분식(Batch)운전 후 연속교반탱크형반응기(CSTR)로 운전(SRT 20, 40일)하였다. 먼저 한 대의 반응기는 35℃에서 55℃로 한 번에 온도변화를 주었고, 다른 반응기의 경우에는 35℃에서 하루에 1도씩 올려서 약 20일에 걸쳐 55℃로 올린 뒤 55℃로 유지하였다. 반응기의 효율을 확인하기 위해 메탄 발생량, total solids (TS), volatile solids (VS), total chemical oxygen demand (tCOD), soluble chemical oxygen demand (sCOD), soluble components (protein, carbohydrate), pH 등을 측정하였으며, NGS (next generation sequencing)를 활용하여 혐기소화 전/후의 소화액의 미생물 군집변화를 알아보았다.
가죽 제조 산업의 현황을 살펴보면 가공에 사용되는 원료피의 50%가 폐기물로 발생되어 진다. 가죽 원료에서 많은 부분이 폐기물로 발생하기 때문에 해당 공정의 폐기물 처리와 함께 자원으로서의 활용적 측면이 함께 고려되어야한다. 하지만 현재 대부분의 피혁폐기물은 주로 매립과 소각 방법으로 처리되고 있어 보다 지속가능하고 환경 친화적인 처리 방법이 요구되고 있는 실정이다. 본 연구에 사용된 피혁폐기물은 가죽 제조 공정 중 탈모공정(Liming) 후에 발생하는 Pelt scrap으로, 주성분이 지질과 단백질로 구성되어 있어 혐기성 소화를 통한 처리 시 효율적인 메탄 생성 기질로 사용될 수 있다. 다만, 피혁폐기물은 pH와 C/N 비가 높아 혐기성 소화 시 메탄 생성 과정에 저해를 줄 수 있어 이에 대한 조절이 필요하다. 일반적으로 피혁폐기물의 pH는 12 부근으로 알려져 있으며, 혐기성소화 공정에서 기질의 pH가 6이하 또는 8.5이상인 경우 메탄 생성에 영향을 줄 수 있다. 이에 효율적인 피혁폐기물 처리와 메탄가스 생산을 위해서는 기질의 pH 조절이 필요하다. 본 연구에서는 피혁폐기물의 높은 pH를 혐기성소화에 알맞은 중성으로 조절해주기 위해 pH가 낮으면서 생분해도가 높은 음폐수를 통합 기질로 사용해 혐기성소화를 실시하였다. 실험에 사용된 피혁폐기물과 음폐수의 pH는 각각 12.4와 4.2였으며, 이를 VS기준 0.13:0.87의 비율로 혼합하여 혼합기질의 pH를 7.7로 만들었다. 250mL serum bottle에 하수슬러지 100mL를 식종하고 기질 1g VS를 주입하였고 35℃, 150rpm으로 유지되는 항온교반기에서 진행하였다. 기질 pH 조절에 의한 소화 성능 확인을 위해 피혁폐기물과 음폐수 단독소화를 실시하고, 이를 pH 7로 조절한 통합소화 조건과 비교하였다. 이때 소화성능은 유기물 감량과 바이오가스 생산량 및 메탄함량을 통해 평가하였다. 실험 결과, 단독 소화와 비교해 기질의 pH를 조절해 통합소화에서 바이오가스 생산량과 메탄 함량이 증대되는 경향을 보였다. 결론적으로 혐기성소화 시 기질 혼합을 통한 중성 pH 조성은 바이오가스 생산량과 메탄 함량의 증가에 영향을 주는 것으로 판단된다.
호소의 부영양화와 같은 수계오염을 유발하는 질소 및 인에 대한 방류수 수질기준 규제가 점차 강화되고 있으며, 최종 개정된 방류수 수질기준에서는 처리수를 Ⅰ지역에 방류하는 경우, 총 질소 20 mg-N/L, 총 인 0.2 mg-P/L로 규제하고 있다. 이에 따라 대부분의 공공하수처리시설은 고도처리공법을 확보하고 있으며 현재 운영중인 고도처리시설에는 생물학적 고도처리법인 SBR공법과 A O 공법이 가장 많이 적용되고 있다. 그러나 한국 하수 성상의 경우 질소에 대한 유기물의 비율이 낮기 때문에 질소 제거효율이 낮고, 탈질을 위해 외부 탄소원을 추가적으로 주입함에 따라 운영비의 증가 문제가 발생된다. 외부 탄소원의 주입에도 불구하고 2015년 환경부에서 발표한 방류수 수질현황을 참고하면 공공하수처리시설의 T-N 제거효율은 약 70%에 그친다. 이에 본 연구에서는 국내 생물학적 고도처리법으로 가장 많이 적용되고 있는 SBR 공법에 수처리용 스펀지 담체를 투입하였을 때, 폭기구간에서의 질소제거 효율을 평가하고자 하였다. 스펀지 담체와 같이 담체 내외부의 물질전달이 자유로운 담체의 경우, 담체 내외부에 형성되는 산소 농도구배로 인하여 담체 내부에는 국소적인 무산소 조건이 형성되며, 그에 따라 담체 외부에서는 질산화가 내부에서는 탈질이 일어나는 SND(Simultaneous Nitrification and Denitrification) 기작이 일어날 수 있다. 이에 폭기 전・후의 암모니아성 질소와 질산성 질소 측정을 통해 SND 효율을 계산한 결과, 약 30%의 효율을 나타내었으며, 이는 탈질이 유도되는 단위공정에서 탈질에 필요한 외부탄소원의 요구량을 감축시킬 수 있으므로 경제적인 측면에서 긍정적인 영향을 미칠 것으로 사료된다.
우리나라의 축산업은 1980년대 이후로 전업화 및 대규모화가 진행됨에 따라 급격히 성장하였으나, 이와 동시에 늘어나는 가축분뇨의 처리문제가 크게 대두 되었다. 2016년 국내 가축분뇨 발생량은 46,988 천 톤에 해당하며, 이중 양돈 분뇨가 18,464 천 톤으로 전체 발생량의 42.3%를 차지하였다. 일반적으로 국내 대부분의 양돈 농가는 슬러리 형태의 돈사 구조이며, 발생하는 분뇨의 성상은 액상 형태이다. 슬러리(액상 가축분뇨)는 액비화 시, 공기를 주입하여 호기성 미생물의 유기물 분해를 유도하기 때문에 액비화 효율을 높이기 위해서는 폭기 방법에 대한 연구가 선결되어야 한다. 따라서 본 연구는 액비화 효율 개선을 위해 기존 폭기 방식과 순산소(산소농도 95%) 처리 시 액비의 이화학 특성 변화의 차이를 분석하여 향후 양질 액비를 만드는 기술 개발의 기초자료로 이용하고자 수행하였다. 시험에 이용된 반응기는 폴리에틸렌(PE) 소재로 약 1.5m3 규모로 제작 하였으며, 순산소에 의한 액비화 효율을 평가하기 위해 무폭기(대조구), 일반폭기, 순산소로 처리구를 설정하였다. 일반 폭기의 경우 ‘가축분뇨 처리시설 표준설계도’에 근거하여 반응기 내에 약 30 L/m3・min의 공기를 주입하도록 설계하였으며, 순산소 처리구는 6 L/m3・min의 공기를 주입한 후 비교 실험을 수행하였다. 액비화 과정 중 온도변화를 관찰한 결과, 액비화 개시 온도는 25℃였으며, 실험 개시 48시간 후에 순산소 처리구의 온도가 47℃ 일반폭기가 32℃ 비폭기가 30℃로 상승하여 순산소 처리구의 유기물 분해가 더 빨리 진행되는 것을 관찰할 수 있었다. 액비화 과정 중 암모니아 발생농도를 관찰한 결과, 순산소 처리구의 경우 액비화 개시 5일 이후에 는 160 ppm으로 가장 높은 암모니아 발생량을 관찰할 수 있었으나, 점차 감소하여 20일 이후에는 검출되지 않았다. 하지만 일반 폭기구의 경우 액비화 개시 20일 까지 약 440 ppm의 암모니아 농도가 검출되었다. 일반적으로 순산소는 유기성 질소의 질산화를 촉진시켜 암모니아 기화를 방지한다고 알려져 있으며, 본 실험에서도 이와 같은 결과를 관찰할 수 있었다. 이를 액비 내 총켈달 질소(TKN)의 농도 변화와 비교 분석한 결과, 실험이 끝난 후 순산소 처리구의 액비 내 질소함량은 0.078%, 일반 폭기구는 0.059%로 조사되어 위 실험과 일치하는 결과를 얻을 수 있었다.
국내에서 가장 많이 사용되고 있는 하폐수 고도처리 공법은 A2O 계열의 공법이나, 반송슬러지 내 질산성 질소로 인하여 인 제거 박테리아의 활성 저해가 일어날 수 있어 인 제거효율이 낮은 단점을 지니고 있으며, 나날이 강화되고 있는 방류수 수질기준으로 인해 새로운 고도처리 공법이 요구되는 실정이다. 이에 영양염류 제거능이 높고 유지관리비를 절약할 수 있으며, 부가 가치성이 높은 장점을 지닌 미세조류를 이용한 하폐수 고도처리 기술이 개발되고 있다. 미세조류는 성장에 필요한 질소, 인 등의 영양염류를 섭취하면서 하폐수 내의 영양염류를 제거하게 되는데, 이 때, 조건에 따라 두 가지 형태로 인의 과잉섭취가 일어난다. 인을 비롯한 영양염류가 충분한 상태에서 여분의 poly-P를 합성하기 위해 성장에 필요한 양보다 더 많은 양의 인을 섭취하는 현상을 luxury uptake라고 하며, 인이 결핍된 조건에서 poly-P를 분해하여 성장하고 다시 인이 주어졌을 때, 분해되었던 poly-P를 보충하기 위한 만큼 인을 더 섭취하는 현상을 overcompensation이라고 한다. 이 때, overcompensation에 의해 섭취되는 인의 양이 luxury uptake 보다 더 많은 것으로 연구된 바 있으며, overcompensation에 의한 인 과잉섭취 정도는 인 결핍기간의 길이에 따라 상이할 수 있다. 따라서 본 연구에서는 인의 결핍기간 길이에 따른 미세조류의 overcompensation 정도에 미치는 영향에 대해 알아보고자 하였다. 인 결핍기간을 0, 5, 8일로 설정하여 실험한 결과, 5, 8, 0일 순으로 인 제거능이 높았으며, 인 결핍기간이 존재할 때 인 제거능이 높아지나, 5일 이상의 결핍기간은 오히려 미세조류의 과도한 대사기능 저하로 인해 인제거능이 저하되는 것으로 나타났다.
국내의 공공하수처리시설의 고도처리공법은 대부분 A2O 계열과 SBR 계열로 운영되고 있다. SBR 계열의 고도처리시설이 더 많은 개소에 적용되었으나, 대규모 하수처리장은 대부분 A2O 계열의 공법을 적용하기 때문에 가장 많은 양의 하폐수를 고도처리하는 공법이라 할 수 있다. A2O 공법은 혐기조와 무산소조, 호기조로 구성되어있어, 질소 및 인의 동시 제거가 가능하다. 그러나 반송슬러지 내의 용존산소 및 질산성 질소로 인하여 인제거 박테리아의 Luxury uptake 효율을 떨어뜨려 인 제거 효율이 불안정하다는 단점이 있다. 또한 A2O와 같은 고도처리공법을 적용함에도 불구, 방류수 수질기준을 만족시키기 어려운 경우가 종종 발생하여 질소 및 인의 제거효율을 높이는 새로운 공법 개발이 필요한 상황이다. 이에 대한 방안으로 미세조류를 적용한 하폐수처리와 관련된 연구가 활발하게 진행되고 있다. 미세조류는 광합성색소를 가지고 있는 단세포 생물로, 빛 에너지로부터 화학에너지(ATP)를 생성하여 성장할 수 있다. 또한 성장을 위한 영양소로 질소와 인을 필요로 하기 때문에 이를 이용하여 하폐수고도처리가 가능하게 된다. 고도처리공법에 미세조류를 적용하기 위해서는 매일 달라지는 유입수의 성상에 대해 미세조류의 활성이 유지되어야 한다. 이에 본 연구에서는 미세조류의 활성이 저하할 것으로 예상되는 저농도 질소(0, 5, 10, 20 mg-N/L)를 함유한 하수의 유입을 가정하고, 미세조류의 활성이 어떻게 변하는지 관찰하고 활성의 척도로서 광합성량과 호흡량을 측정했다. 그에 따라 미세조류를 적용한 고도처리공법으로 저농도 질소를 함유한 하수를 처리할 수 있는가에 대한 가능성을 평가하고자 했다.
본 연구에서는 폐기물가스화 후 생성되는 합성가스의 고순도 수소화를 위해 고온 수성가스전이반응(HT-WGS : High Temperature-Water Gas Shift) 반응용 특정 산화물(CeO2, ZrO2, TiO2 및 Al2O3)에 코발트를 담지한 촉매를 제조하고 그 산화환원특성을 비교 분석하였다. 특정 산화물에 Co를 함침법을 이용하여 담지하여 Co/CeO2, Co/ZrO2, Co/Al2O3, Co/TiO2 촉매를 각각 제조하였다. 제조된 Co 기반 촉매의 물리적 특성 분석은 BET 비표면적과 XRD 분석을 통해 수행하였고 CO 화학흡착과 H2-TPR 분석을 통해 산화환원 특성을 파악하고 동시에 물리-화학적 특성간의 상관관계를 해석하였다. H2-TPR 분석 및 CO 화학흡착 분석 결과, 코발트의 분산이 지지체 산화물의 환원성과 밀접한 상관관계를 가지고 있음을 알 수 있었다. 이 연구 결과는 Co/CeO2가 반응온도 350 ~ 550℃에서 활성 평가한 촉매 중에서 가장 우수한 활성을 나타내었다. 또한, Co/CeO2 촉매가 Co/ZrO2 및 Co/Al2O3 촉매보다 높은 촉매 활성 및 안정성을 나타내었다. Co/CeO2 촉매의 탁월한 활성 및 안정성은 지지체의 환원성과 높은 Co 금속의 분산에 기인하는 것으로 나타났다. 결과적으로 폐기물가스화로부터 생산된 합성가스를 고순도 수소로 전환하기 위한 HT-WGS 반응에서 Co/CeO2 촉매는 매우 유망한 촉매임을 알 수 있었다.
본 연구에서는 선행 연구를 통해 고온전이반응(HTS: High Temperature Shift reaction)에서 높은 활성 및 안정성을 나타내는 Fe-Al-Cu 촉매에 대한 연구를 수행하였다. 연구실 규모(3gcatal./batch)에서 공침법으로 제조된 Fe-Al-Cu 촉매 시스템을 대용량 규모로 스케일-업하기 위해 연구실 규모와 대용량 규모로 제조된 Fe-Al-Cu 촉매의 다양한 물리-화학적 특성을 XRD, H2-TPR, BET, N2 흡착 분석 등으로 분석하였다. 배치당 제조량을 달리하여 제조된 Fe-Al-Cu 촉매는 촉매반응장치를 통해 정량적으로 성능을 비교 평가하였으며 제조된 촉매의 성능을 입증하기 위해 상업용 Fe-Cr 촉매와 성능을 직접 비교하였다. 특히, 선행 연구를 통해 최적화된 고활성 및 고안정성 Fe-Al-Cu 촉매를 대용량 규모로 제조하여 제조량에 따른 성능 변화와 물리화학적 특성간의 상관관계에 대해 규명하였다.
최근 우리나라 서・남해안에 대량 유입되고 있는 괭생이모자반은 매년 그 양이 증가하고 있으며, 항해 및 양식시설 등에 피해를 주고 있다. 또한 막대한 비용 및 인력을 동원하여 수거한 후에도 그 처리에 어려움을 겪고있다. 우리나라 해안에 유입되는 양이 매년 증가하고 있어 괭생이모자반에 대한 적절한 처리방안 대책이 시급한 실정이다. 해조류는 바이오에너지 회수를 위한 바이오매스로 주목을 받아, 에너지 전환 공정에 대한 연구가 활발히 진행되고 있다. 괭생이모자반은 해조류 중 갈조류에 속하며 바이오매스로서의 잠재성이 높을 것으로 판단된다. 그러나 바다에서 수거/수확된 해조류에는 해수 속 염분이 일부 묻어 있을 것으로 사료되며, 이 단계에서 해조류 관리와 후속 공정과의 연구는 현재 미미하다. 이에 본 연구에서는 바다에서 수거된 괭생이모자반을 대상으로 수거직후 관리(세척여부)에 따라 바이오에너지 전환 공정 중 당 가수분해에 미치는 영향에 대하여 검토하였다. 세척시료와 미세척시료를 대상으로 강열감량 후 회분의 전기전도도 값을 측정한 결과, 미세척시료가 2.28 mS/cm로 세척시료보다 1.64배 높았으며, 이때 회분의 약 73%가 염분으로 나타났다. 세척과정을 반복적으로 실시하여 배출된 세척수의 전기전도도를 측정한 결과, 3회 세척 후 세척수 전기전도도는 1회 세척 후 결과 값의 88%가 감소하여, 해조류 표면에 묻은 염분은 반복되는 세척과정에서 상당부분 제거됨을 확인하였다. 세척여부는 당 가수분해 공정에도 영향을 미쳤으며, 특히 효소를 이용한 생물학적 가수분해 공정에 저해효과가 큰 것으로 나타났다.