To evaluate the characteristics of radioactive waste from permanently shut down nuclear power plants for decommissioning, there is a method of directly analyzing samples and, on the other hand, a computerized evaluation method based on operation history. Even if the radioactivity of the structures or radioactive wastes in the nuclear power plant is analyzed by the computerized evaluation method, a method of directly analyzing the sample must be accompanied in order to more accurately know the characteristics of the nuclear power plant’s radioactive waste material. In order to obtain such samples, we need a way to collect materials from radioactive waste. However, in the case of a permanently shut down nuclear power plant with a long operating history, human access is limited due to radiation of the material. In this study, we propose a method of remotely collecting samples that guarantees radiation protection and worker safety at the site where radioactive waste is located.
The separation of hydrogen isotopes is a critical issue in various fields, such as deuterium or tritium production and the treatment of radioactively contaminated water. In this presentation, we describe the pervaporative separation of hydrogen isotopes using proton conductive membranes and underlying separation mechanism. We investigated the H/D separation factors of perfluorosulfonic acid (Nafion) and polybenzimidazole membranes using pervaporation, and found that both membranes exhibited similar separation factors of approximately 1.026. Water permeation flux through the membranes was highly dependent on their thickness and type, and increased with operation temperature. However, the effect of temperature on H/D separation factor was negligible. We also demonstrated the cascade separation of H/D, indicating the potential application of multi-stage operation. We found that surface transport mechanisms such as hydron hopping contributed the most to H/D separation during the pervaporation process of proton conductive membranes.
In this study, four technologies were selected to treat river water, lake water, and groundwater that may be contaminated by tritium contaminated water and tritium outflow from nuclear power plants, performance evaluation was performed with a lab-scale device, and then a pilot-scale hybrid removal facility was designed. In the case of hybrid removal facilities, it consists of a pretreatment unit, a main treatment unit, and a post-treatment unit. After removing some ionic, particulate pollutants and tritium from the pretreatment unit consisting of UF, RO, EDI, and CDI, pure water (2 μS/cm) tritium contaminated water is sent to the main treatment process. In this treatment process, which is operated by combining four single process technologies using an inorganic adsorbent, a zeolite membrane, an electrochemical module and aluminumsupported ion exchange resin, the concentration of tritium can be reduced. At this time, the tritium treatment efficiency of this treatment process can be increased by improving the operation order of four single processes and the performance of inorganic adsorbents, zeolite membrane, electrochemical modules, and aluminum- supported ion exchange resins used in a single process. Therefore, in this study, as part of a study to increase the processing efficiency of the main treatment facility, the tritium removal efficiency according to the type of inorganic adsorbent was compared, and considerations were considered when operating the complex process.
After permanent shutdown, contamination existing in nuclear facilities must be removed according to decontamination and dismantling procedures to achieve the target end state. In Korea, Korea Research Reactor (KRR) Units 1, 2 are being decommissioned, and Kori Unit 1 is in the process of reviewing the final decommissioning plan for the start of decommissioning. In order to complete decommissioning of nuclear facilities, it is necessary to satisfy the dose criteria according to the residual radioactivity remaining in the site and buildings. In the United States, which has a lot of experience in decommissioning, Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM) is used as a procedure for measuring and analyzing residual radioactivity. In MARSSIM, survey units are classified according to the level of contamination, and the radiation survey procedure and effort can be determined according to the survey unit level. After the radiological analysis and statistical verification of the survey unit, it is decided whether to release the site. At this time, the geographical area to be used as the background level is called the reference area. Therefore, selection of an appropriate reference area is important for accurate residual radioactivity analysis and for the release of the site. In this study, reference area evaluation cases and domestic decommissioning procedures were analyzed to derive considerations for selecting an appropriate reference area. For example, Zion NPP in the US selected a place outside the boundary of the restricted area unaffected by nuclear power plant operation as a reference area by referring to the meteorological monitoring report. Among Korea’s decommissioning procedures, the appropriateness of the reference area can be confirmed through the final status report submitted upon completion of decommissioning. However, since the selection and application of the reference area needs to be reflected during decommissioning, relevant information must be updated through periodic communication between operator and regulatory agency. The results of this study will be used as considerations for selecting a reference area.
The amount of waste that contains or is contaminated with radionuclides is increasing gradually due to the use of radioactive material in various fields including the operation and decommissioning of nuclear facilities. Such radioactive waste should be safely managed until its disposal to protect public health and the environment. Predisposal management of radioactive waste covers all the steps in the management of radioactive waste from its generation up to disposal, including processing (pretreatment, treatment, and conditioning), storage, and transport. There could be a lot of strategies for the predisposal management of radioactive waste. In order to comply with safety requirements including Waste Acceptance Criteria (WAC) at the radioactive waste repository however, the optimal scenario must be derived. The type and form of waste, the radiation dose of workers and the public, the technical options, and the costs would be taken into account to determine the optimal one. The time required for each process affects the radiation dose and respective cost as well as those for the following procedures. In particular, the time of storing radioactive waste would have the highest impact because of the longest period which decreases the concentrations of radionuclides but increases the cost. There have been little studies reported on optimization reflecting variations of radiation dose and cost in predisposal management scenarios for radioactive waste. In this study, the optimal storage time of radioactive waste was estimated for several scenarios. In terms of the radiation dose, the cumulative collective dose was used as the parameter for each process. The cost was calculated considering the inflation rate and interest rate. Since the radiation dose and the cost should be interconvertible for optimization, the collective dose was converted into monetary value using the value so-called “alpha value” or “monetary value of Person-Sv”.
Pressurized Heavy Water Reactors (PHWR) have stored ion exchange resins, which are used in deuteration, dehydrogenation systems, liquid waste treatment systems, and heavy water cleaning systems, in spent resin storage tanks. The C-14 radioactivity concentration of PHWR spent resin currently stored at the Wolseong Nuclear Power Plant is 4.6×10E+6 Bq/g, which exceeds the limited concentration of low-level radioactive waste. In addition, when all is disposed of, the total radioactivity of C-14, 1.48×10E+15 Bq, exceeds the disposal limit of the first-stage disposal facility, 3.04×10E+14. Therefore, it is currently impossible to dispose of them in Gyeongju intermediate- and low-level disposal facilities. As to dispose of spent resins produced in PHWR, C-14 must be removed from spent resins. This C- 14 removal technology from the spent resin can increase the utilization of Gyeongju intermediate- and low-level disposal facilities, and since C-14 separated from the spent resin can be used as an expensive resource, it is necessary to maximize its economic value by recycling it. The development of C-14 removal technology from the spent resin was carried out under the supervision of Korea Hydro & Nuclear Power in 2003, but there was a limit to the C-14 removal and adsorption technology and process. After that, Sunkwang T&S, Korea Atomic Energy Research Institute, and Ulsan Institute of Science and Technology developed spent resin treatment technology with C-14-containing heavy water for the first and second phases from 2015 to 2019 and from 2019 to the present, respectively. The first study had a limitation of a pilot device with a treatment capacity of 10L per day, and the second study was insufficient in implementing the technology to separate spent resin from the mixture, and it was difficult to install on-site due to the enlarged equipment scale. The technology to be proposed in this paper overcomes the limitations of spent resin mixture separation and equipment size, which are the disadvantages of the existing technology. In addition, since 14CO2 with high concentration is stored in liquid form in the storage tank, only the necessary amount of C-14 radioactive isotope can be extracted from the storage tank and be used in necessary industrial fields such as labeling compound production. Therefore, when the facility proposed in this paper is applied for treating mixtures in spent resin tanks of PHWR, it is expected to secure field applicability and safety, and to reflect the various needs of consumers of labeled compound operators utilizing C-14.
During decommissioning and site remediation of nuclear power plant, large amount of wastes (including radioactive waste) with various type will be generated within very short time. Among those wastes, soil and concrete wastes is known to account for more than 70% of total waste generated. So, efficient management of these wastes is very essential for effective NPP decommissioning. Recently, BNS (Best System) developed a system for evaluation and classification of soil and concrete wastes from the generation. The system is composed of various modules for container loading, weight measurement, contamination evaluation, waste classification, stacking, storage and control. By adopting modular type, the system is good for dealing with variable situation where system capacity needs to be expanded or contracted depending on the decommissioning schedule, good for minimizing secondary waste generated during maintenance of failed part and also good for disassemble, transfer and assemble. The contamination evaluation module of the system has two sub module. One is for quick measurement with NaI(Tl) detector and the other is for accurate measurement with HPGe detector. For waste transfer, the system adopts LTS (Linear Transfer System) conveyor system showing low vibration and noise during operation. This will be helpful for minimizing scattering of dust from the waste container. And for real time positioning of waste container, wireless tag was adopted. The tag also used for information management of waste history from the generation. Once a container with about 100 kg of soil or concrete is loaded, it is moved to the weight measurement module and then it transfers to quick measurement module. When measured value for radioactivity concentration of Co- 60 and Cs-137 is more than 1.0 Bq/g, then the container is classified as waste for disposal and directly transferred to stacking and storage rack. Otherwise, the container is transferred to accurate measurement module. At the accurate module, the container is classified as waste for disposal or waste for regulatory clearance depending on the measurement result of 0.1 Bq/g. As the storage rack has a sections for disposal and regulatory clearance respectively, the classified containers will be positioned at one of the sections depending on the results from the contamination evaluation module. The system can control the movement of lots of container at the same time. So, the system will be helpful for the effective nuclear power plant decommissioning in view of time and budget.
After the Fukushima nuclear accident in Japan in March 2011, many Koreans were concerned that products exposed to radioactive materials released from the nuclear power plant would be imported into Korea. Systematic radiation monitoring was required for food and daily necessities imported from the nuclear accident area. The need for a legal system to support systematic radiation monitoring was also demanded. The Act on Protective Action Guidelines against Radiation in the Natural Environment was enacted to resolve concerns regarding environmental radiation in Korea in July 2011. According to this law, radiation monitoring equipment has been installed and operated at major airports and ports nationwide. This paper aims to review the radiation monitoring system of the Korean government comprehensively. The legal system and the legal basis for radiation monitoring of imported cargo conducted by each department were investigated by analyzing the laws and regulations of radiation monitoring for the relevant cargo items. In addition, the current status of radiation monitoring by the government departments was examined to determine how radiation monitoring for imported cargo is performed within the legal system. The investigation of the current radiation monitoring system for imported cargo in Korea confirmed that radiation monitoring is conducted by classifying cargo items under the jurisdiction of each government department for all imported cargo. However, the reduction in efficiency of radiation monitoring of imported cargoes, unclear legal grounds for radiation monitoring of imported cargo by some departments, the occurrence of overlapping inspections by departments, and the difficult process of issuing the radiation test certificate required for customs clearance by the Korea Customs Service were also identified. As a result of the analysis, it was found that the current radiation monitoring system for imported cargo in Korea ought to be improved, taking into account efficiency, overlapping inspection, legal background, and the difficult process of issuing the certificates.
Gamma imaging devices that can accurately localize the radioactive contamination could be effectively used during nuclear decommissioning or radioactive waste management. While several hand-held devices have been proposed, their low efficiency due to small sensors have severely limited their application. To overcome this limitation, a high-speed gamma imaging system is under development which comprises two quad-type detectors and a tungsten coded aperture mask. Each quad-type detector consists of four rectangular NaI(Tl) crystals with dimensions of 146×146 mm2 and 72 square-type photomultiplier tubes (PMTs). The detectors are placed in front and back to serve as scatter and absorber, respectively, for Compton imaging. In addition, a coded aperture mask was fabricated in rank 19 modified uniformly redundant array pattern and placed in front of the scatter for coded aperture imaging. The system offers several advanced features including 1) high efficiency achieved by employing large-area NaI(Tl) crystals and 2) broad energy range of imaging by employing a hybrid imaging combining Compton and coded aperture imaging. The imaging performance of the system was evaluated through experiments in various conditions with different gamma energies and source positions. The imaging system provides clear images of the source locations for gamma energies ranging from as low as 59.5 keV (241Am) to as high as 1,330 keV (60Co). The imaging resolution was within the range of 7.5–9.4°, depending on gamma energies, when a hybrid maximum likelihood estimation maximization (MLEM) algorithm was used. The developed system showed high sensitivity, as the 137Cs source at distance, incurring dose rate lower than background level (0.03 μSv/h above background dose rate), could be imaged in approximately 2 seconds. Even under lower dose rate condition (i.e., 0.003 μSv/h above background dose rate), the system was able to image the source within 30 seconds. The system developed in the present study broadens the applicable conditions of the gamma ray imaging in terms of gamma ray energy, dose rate, and imaging speed. The performance demonstrated here suggests a new perspective on radiation imaging in the nuclear decontamination and radioactive waste management field.
In this study, we evaluate artificial neural network (ANN) models that estimate the positions of gamma-ray sources from plastic scintillating fiber (PSF)-based radiation detection systems using different filtering ratios. The PSF-based radiation detection system consists of a single-stranded PSF, two photomultiplier tubes (PMTs) that transform the scintillation signals into electric signals, amplifiers, and a data acquisition system (DAQ). The source used to evaluate the system is Cs-137, with a photopeak of 662 keV and a dose rate of about 5 μSv/h. We construct ANN models with the same structure but different training data. For the training data, we selected a measurement time of 1 minute to secure a sufficient number of data points. Conversely, we chose a measurement time of 10 seconds for extracting time-difference data from the primary data, followed by filtering. During the filtering process, we identified the peak heights of the gaussian-fitted curves obtained from the histogram of the time-difference data, and extracted the data located above the height which is equal to the peak height multiplied by a predetermined percentage. We used percentage values of 0, 20, 40, and 60 for the filtering. The results indicate that the filtering has an effect on the position estimation error, which we define as the absolute value of the difference between the estimated source position and the actual source position. The estimation of the ANN model trained with raw data for the training data shows a total average error of 1.391 m, while the ANN model trained with 20%-filtered data for the training data shows a total average error of 0.263 m. Similarly, the 40%-filtered data result shows a total average error of 0.119 m, and the 60%-filtered data result shows a total average error of 0.0452 m. From the perspective of the total average error, it is clear that the more data are filtered, the more accurate the result is. Further study will be conducted to optimize the filtering ratio for the system and measuring time by evaluating stabilization time for position estimation of the source.
The increasing use of drones in terrorist attacks highlights the need for effective strategies to prevent and respond to drone terrorism. This study uses machine learning approach to identify factors that predict the success of drone terrorism and suggests policy alternatives for preventing such acts. Drone terrorism is becoming increasingly accessible due to advancements in information and communication technology, and events such as North Korea’s drone infiltration and the Russia-Ukraine war demonstrate the potential threat of drone attacks on Important National Facilities, including nuclear power plants. Using the Global Terrorism Database (GTD), this study analyzed drone terrorism incidents that occurred worldwide from 2016 to 2020. The study employed the Random Forest algorithm, which can incorporate multiple factors and their interactions, making it particularly suitable for social science research. The study provides new insights by deriving predictors that were previously overlooked in empirical analyses of drone terrorism. The findings of this study can aid in the establishment of anti-terrorism policies aimed at addressing the growing threat of drone terrorism. This can include the organization and expansion of the crisis management governance terrorism response council, the creation of a working manual through the partial revision of laws concerning drone terrorism response, and the implementation of anti-drone equipment and systems. Ultimately, the insights gained from this study can provide development of effective strategies aimed at preventing and responding to drone attacks. The study highlights the importance of proactive measures to mitigate the risks posed by drone technology in the context of terrorism.
Airborne surveys are an essential analysis method for rapid response and contamination identification in the early event of a radiation emergency. On the other hand, airborne surveys are far from the ground, so it is necessary to convert the dose rate at a height of 1 m above the ground. In order to improve the accuracy of the analysis value, a lot of analysis of the measurement data is required. In our previous research, we developed MARK-A1, an instrument for rapid radiation aerial survey in high radiation environment, and MARK-M1, a multipurpose instrument for radiation detection. In this study, a large unmanned aerial vehicle (UAV) was used to conduct airborne surveys using three types of detectors in the Jeju Island environment. The NaI(Tl) detector uses one 3-inch scintillator (38 mm φ × 38 mm H), and the LaBr3 detector uses two 2-inch scintillators (25 mm φ × 25 mm H). The CZT detector uses a detector with dimensions of (15 mm × 15 mm × 7.5 mm). The UAV has a payload of 15 kg (J10, JCH systems Inc. Seoul, Korea). Three different detectors were operated at a constant height of 20 m, 30 m, and 50 m. The flight experiments were performed in the west near Jeju City. Dose rate conversion factors were used to convert the dose rate from the measured spectra, and hovering flights were conducted between 1 and 50 meters to derive altitude correction factors. In this paper, the data measured with each detector in the same area were compared and the differences were derived.
Our research team has developed a gamma ray detector which can be distributed over large area through air transport. Multiple detectors (9 devices per 1 set) are distributed to measure environmental radiation, and information such as the activity and location of the radiation source can be inferred using the measured data. Generally, radiation is usually measured by pointing the detector towards the radioactive sources for efficient measurement. However, the detector developed in this study is placed on the ground by dropping from the drone. Thus, it does not always face toward the radiation source. Also, since it is a remote measurement system, the user cannot know the angle information between the source and detector. Without the angle information, it is impossible to correct the measured value. The most problematic feature is when the backside of the detector (opposite of the scintillator) faces the radiation source. It was confirmed that the measurement value decreased by approximately 50% when the backside of the detector was facing towards the radiation source. To calibrate the measured value, we need the information that can indicate which part of the detector (front, side, back) faces the source. Therefore, in this study, we installed a small gamma sensor on the backside of the detector to find the direction of the detector. Since this sensor has different measurement specifications from the main sensor in terms of the area, type, efficiency and measurement method, the measured values between the two sensors are different. Therefore, we only extract approximate direction using the variation in the measured value ratio of the two sensors. In this study, to verify the applicability of the detector structure and measurement method, the ratio of measured values that change according to the direction of the source was investigated through MCNP simulation. The radioactive source was Cs-137, and the simulation was performed while moving in a semicircular shape with 15 degree steps from 0 degree to 180 degrees at a distance of 20 cm from the center point of the main sensor. Since the MCNP result indicates the probability of generating a pulse for one photon, this value was calculated based on 88.6 μCi to obtain an actual count. Through the ratio of the count values of the two sensors, it was determined whether the radioactive source was located in the front, side, or back of the probe.
Molybdenum-99 (Mo-99) and, its daughter, technetium-99m (Tc-99m) are the most commonly used medical isotope covering more than 85% of the nuclear diagnostics. Currently, majority of Mo-99 supplied in the market is fission-based Mo-99 produced by the fission of U-235 in research reactors. In spite of substitutive production schemes, fission-based Mo-99 is the major source for its significant advantages of high specific activity and large production capacity. The new research reactor (KJRR) is under construction in Gijang, Busan, Korea. The project is aiming 2,000 Ci/week Mo-99 production. For the objective, KAERI has been developed Mo-99 production process using HANARO. Weekly production of 2,000 Ci (100,000 Ci/yr, 6-day calibration) Mo-99 can cover 100% domestic needs, as well as 20% of international demand. However, overall cost for the fission-based Mo-99 production is continuously increasing. Previously, the most Mo-99 producers used weapon-grade highly enriched uranium (HEU) targets. Recently, the use of HEU in private sector is limited for non-proliferation. As a result, major Mo-99 producers are forced to convert their targets from HEU to low enriched uranium (LEU, 19.75% U-235 enrichment). The conversion of Mo-99 target caused waste issue. It is not only because of the 50% less yield in production, but also increment of the radioactive waste by 200%. Therefore, designing optimal radioactive waste treatment strategy for fission-based Mo-99 production is becoming more important than ever. During the process, irradiated LEU targets are dissolved in alkaline solution in hot cells. Fission products other than Mo-99 removed from the solution via series of separation steps. Then Mo-99 is eluted and purified to meet international standard as an active pharmaceutical ingredients (APIs). Radioisotopes of xenon (Xe) and krypton (Kr) generated from the fission of U-235 during the irradiation of the target in the research reactor. Then, the radioactive gas released during the process. The emission of radioactive noble gas from the medical radioisotope production facility can be controlled via delayed release through large charcoal beds. KAERI developed compact xenon adsorption module with chilled carbon column to meet 5 GBq/ day of CTBTO recommendation. Small volume of chilled charcoal can satisfy the guideline, replacing massive gas tank system. Therefore, development of optimized radioactive gas treatment system for the Mo-99 production is one of the essential piece for the successful construction, licensing and operation of the KJRR project.
As of 2023, there are a total of 24 nuclear power plants (NPPs) in operation in Korea, with 21 pressurized water reactors (PWRs) and three pressurized heavy water reactors (PHWRs). Korean NPPs discharge radioactive effluents into the environment every year. Radioactive effluents from NPPs contain various radionuclides and materials, including 3H, 14C, Noble gas, particulates, and iodine Among the radioactive effluents discharged from Korean NPPs, 14C is a pure beta emitter with a half-life of 5,730 years. The human body can inhale and ingest 14C to cause internal exposure. In addition, the amount of 14C present in the environment is decreasing, but the amount of 14C discharged from NPPs is increasing. 14C discharged to the environment can be inhaled and ingested by the public around NPPs through various pathways. For this reason, it is very important to monitor and manage 14C because it affects the dose of the public around NPPs. Therefore, this study compared and analyzed the average emissions of 14C discharged from PWRs and PHWRs during the recent 10 years (2012-2021). An average of the public dose due to 14C released from NPPs depending on the reactor types from 2012 to 2021 was also compared. It is inevitable to discharge radioactive effluents while operating NPPs. Korea Hydro & Nuclear Power (KHNP) manages and monitors radioactive effluents released into the environment. According to a survey and analysis of 14C discharged from PWRs and PHWRs and the average dose of the public over the recent 10-year (2012-2021) around Korean NPPs, 14C released from PWR accounted for 3.1% of the total discharge but accounted for more than 93.67% of the total public dose. In addition, 14C discharged from PHWRs accounted for 1.12% of the total discharge, but its resulting dose to the public accounted for more than 83.87% of the total public dose. As a result of analyzing the public dose due to 14C from 2012 to 2021, it was gradually increasing every year. Based on these results, monitoring and managing 14C discharge and its resulting doses to the public are important in the future.
In the event of a radioactive release, it is essential to quickly detect and locate the source of the release, as well as track the movement of the plume to assess the potential impact on public health and safety. Fixed monitoring posts are limited in their ability to provide a complete picture of the radiation distribution, and the information they provide may not be available in real-time. This is why other types of monitoring systems, such as mobile monitoring, aerial monitoring, and personal dosimeters, are also used in emergency situations to complement the information provided by fixed monitoring posts. Also, the monitoring system can be improved by using the Kriging technique, which is one of the interpolation methods, to predict the radiation dose in the relevant districts. This can be achieved by utilizing both the GPS information and the radiation dose measured at a particular point. The Kriging method involves estimating the value between different measurement points by considering the distance between them. The model used GPS and radiation data that were measured around the Hanbit NPP. The data were collected using a radiation measuring detector on a bus that traveled around the NPP area at 2-second intervals for one day. From the collected data, 200 data points were randomly selected for analysis, excluding the data measured at the bus garage out of a total of 16,550 data points. The average dose of the daily measurement data was 117.94 nSv/h, and the average dose of the 200 randomly extracted data was 119.17 nSv/h. The GPS and radiation dose data were utilized to predict the radiation dose around the Yeonggwang area where the Hanbit NPP is located. In the event of an abnormal release of radioactive material, it can be difficult to accurately determine the dose unless a monitoring measurement point is present. This can delay the rapid evacuation of residents during an emergency situation. By utilizing the Kriging model to make predictions, it is anticipated that more accurate dose predictions can be generated, particularly during accident scenarios. This can aid in the development of appropriate resident protection measures.
Radioactive waste can be classified according to the concentration level for radionuclides, and the disposal method is different through the level. Gamma analysis is inevitably performed to determine the concentration of radioactive waste, and when a large amount of radioactive waste is generated, such as decommissioning nuclear facilities, it takes a lot of time to analyze samples. The performance of a lot of analysis can cause human errors and workload. In general, gamma analysis is performed using by HPGe detector. Recently, for convenience of analysis, commercial automatic sample changers applicable to the HPGe detectors were developed. The automatic sample changers generate individual analysis reports for each sample. In this study, gamma analysis procedure was improved using the application of the automatic sample changer and the automated data parsing using by Python. The application of automatic sample changers and data parsing technique can solve the problems. The human errors were reduced to 0% compared to the previous method by improving the gamma analysis procedure, and working time were also dramatically reduced. This automation of analysis procedure will contribute to reducing the burden of analysis work and reducing human errors through various improvements.
Natural uranium-contaminated soil in Korea Atomic Energy Research Institute (KAERI) was generated by decommissioning of the natural uranium conversion facility in 2010. Some of the contaminated soil was expected to be clearance level, however the disposal cost burden is increasing because it is not classified in advance. In this study, pre-classification method is presented according to the ratio of naturally occurring radioactive material (NORM) and contaminated uranium in the soil. To verify the validity of the method, the verification of the uranium radioactivity concentration estimation method through γ-ray analysis results corrected by self-absorption using MCNP6.2, and the validity of the pre-classification method according to the net peak area ratio were evaluated. Estimating concentration for 238U and 235U with γ-ray analysis using HPGe (GC3018) and MCNP6.2 was verified by -spectrometry. The analysis results of different methods were within the deviation range. Clearance screening factors (CSFs) were derived through MCNP6.2, and net peak area ratio were calculated at 295.21 keV, 351.92 keV(214Pb), 609.31 keV, 1120.28 keV, 1764.49 keV(214Bi) of to the 92.59 keV. CSFs for contaminated soil and natural soil were compared with U/Pb ratio. CSFs and radioactivity concentrations were measured, and the deviation from the 60 minute measurement results was compared in natural soil. Pre-classification is possible using by CSFs measured for more than 5 minutes to the average concentration of 214Pb or 214Bi in contaminated soil. In this study, the pre-classification method of clearance determination in contaminated soil was evaluated, and it was relatively accurate in a shorter measurement time than the method using the concentrations. This method is expected to be used as a simple pre-classification method through additional research.
Radiation workers who handle radioisotopes, radioactive waste, nuclear material etc. may be contaminated with radioactive material due to inhalation, resulting in internal radiation exposure. For preventing radiation damage and monitoring the exposure of workers, KAERI operates a Body Radiation Measurement Laboratory. According to Article 5 of the Nuclear Safety and Security Commission (NSSC) Notice No. 2017-77, “Regulation on Measurement and Calculation of Internal Radiation Dose,” The nuclear energy-related business operator with workers etc. shall establish and operate procedures and methods including the following Subparagraphs to secure the reliability of measurement of the internal radiation dose : operation and calibration of measuring instrument, inspection procedures, uncertainty of measurement, lower limit of detection and geometric configuration used for measurement. In accordance with the provision, Whole Body Counter utilized in the Body radiation Measurement Laboratory has periodic calibration / QA procedures to ensure reliability. This paper performed reliability validation of the measurement system of the Body Radiation Measurement Laboratory in the KAERI based on the performance criteria for radio-bioassay criteria presented in ISO 28218 and ANSI HPS N13.30-2011(R2017). The first criteria is MTL (Minimum Testing Level). ISO 28218 provides MTLs for each measurement category, type and nuclide. For reliable results, it is recommended to use calibration sources with higher radioactivity than the values given. The MTL for fission products in total body counting is 3 kBq and for the last 3 years the laboratory has been using sources of 6-7 kBq (Co-60, Cs-137 etc.). The second criteria is RMSE (Root Mean Square Error). It is a measure of total error defined as the square root of the sum of the square of the relative precision (SB) and the square of the relative bias (Br). The RMSE shall be lower than or equal to 0.25. The largest RMSE in the last 3 years is 0.12, and average value is 0.065, which meets the criteria. In this study, we verified the reliability of the radioactivity measurement system (WBC) based on the radio-bioassay standards presented in ISO 28218 and ANSI HPS N13.30-2011(R2017). The values were obtained using 3 years of calibration count data, and it was found that both MTL, RMSE for each nuclide met the standards with a large margin of error and were in good operating condition. This study can be applied to the maintenance, performance check, and reliability verification of similar in vivo radio-bioassay methods.
Among domestic Nuclear Power Plants (NPPs), there are a total of 10 nuclear power plants whose operating license expires by 2030, excluding Kori unit 1 and Wolsong unit 1, which are permanently shut downed. Continued operation of these nuclear power plants is being reviewed as a government task. For continued operation, nuclear power plant owners must prepare periodic safety review and other evaluation reports to receive reviews to maintain safety even during continued operation. In the safety evaluation of NPP, it is important to refer to overseas cases and operation experiences. In this study, the matters of radioactive waste management for continued operation of NPP was considered by analyzing the safety evaluation reports and safety enhancements of license renewal of NPP in USA, Radioactive waste generated from NPPs can be classified into solid, liquid, and gaseous states. Radioactive waste generated during the operation and maintenance of power plants is classified, stored and treated in the radioactive waste management system according to the source. Equipment and monitors related to radioactive waste management are continuously operated, managed, inspected according to standards and maintain their original functions. Various activities to reduce the generation and emission of radioactive waste from NPPs are performed. After reviewing the NRC’s safety evaluation report on the application documents for license renewal of US NPPs (Sequoyah, Byron and braidwood) the evaluation details and matters requiring enhancement for the radioactive waste management system were confirmed. As a major check, selective leaching occurred in the body of the gray cast iron valve and the heat exchanger shell containing the copper alloy exposed to the radioactive waste liquid. Selective leaching causes loss of material and may interfere with the original function of the facility, so management is required. For the safe operation and management of NPPs, it is important to refer to overseas cases and experiences. Among the safety evaluations for the continued operation of domestic NPPs, in the field of the radioactive waste management system, if the case of the US NPP is referred to, the review by the regulatory body and the action taken by the licensee will be more efficient.