Catalytic reduction and oxidation of NO over polyacrylonitrile based activated carbon fibers (PAN-ACF) under various conditions were carried out to develop removal process of NO from the flue gas. The effect of temperature, oxygen concentration and the moisture content for the reduction of NO with ammonia as a reducing agent was investigated. The reduction of NO increased with the oxygen concentration, but decreased with the increased temperature. The moisture content in the flue gas affects the reduction of NO as the inhibition of the adsorption of the other components and the reaction on the surface of ACE For the oxidation of NO to NO2 over PAN-ACF without using a reducing gas, it showed the temperature and the oxygen concentration of the flue gas are the important factors for the NO conversion in which the conversion increased with oxygen concentration and decreased with the temperature increase and might be the alternative option for the selective catalytic reduction process.
This study investigated the management environment of medium and small business by examining the role of medium and small business in national economics, the change in management condition, and the problems in quality and technique. Also we analyzed problems in the past quality control activity of our medium and small business, and examined the driving direction and introduction method of QM. And to understand the effect of manager's concern in quality management to observe the quality system before and after introduction of QM. A target for this investigation is the medium and small business which has introduced QM through ISO 9000.
We have investigated the properties of the high-latitude cloud MBM 7 using the 3 mm transitions of CO, CS, HCN, HCO+,C3H2,N2H+, and SiO. The molecular component of MBM 7 shows a very clumpy structure with a size of ≤0.5 pc, elongated along the northwest-southeast direction, perpendicularly to an extended HI component, which could be resulted from shock formation. We have derived physical properties for two molecular cores in the central region. Their sizes are 0.1-0.3 pc and masses 1-2 M⊙ having an average volume density ~2×10 3 cm-3 at the peak of molecular emission. We have tested the stability of the cores using the full version of the virial theorem and found that the cores are stabilized with ambient medium, and they are expected not to be dissipated easily without external perturbations. Therefore MBM 7 does not seem to be a site for new star formation. The molecular abundances in the densest core appear to be much less (by about one order of magnitude) than the 'general' dark cloud values. If the depletions of heavy elements are not significant in the HLCs compared with those in typical dark clouds, our results may suggest different chemical evolutionary stages or different chemical environments of the HLCs compared with dense dark clouds in the Galactic plane.
Induction of DNA fragmentation of rat embryonic midbrain cells was studied to see whether apoptosis plays a role in OTA-induced microcephaly observed in cultured rat whole embryos during embryogenesis. We first cultured whole embryos (prepared from day 9.5 gestation rats) for 48 hrs with OTA and found that OTA induced microcephaly in cultured rat whole embryos. We also examined whether the microcephaly seen in cultured whole embryos is partially related to the increase of apoptosis of undifferentiated embryonic midbrain cells. Embryonic midbrain cells were prepared from day 12 gestation rat embryos, and cultured in the mixture media of Dulbecco's modified eagle's medium nutrient and Ham's F12 (1 : 1) containing 10% Nuserum, 100 ㎍/㎖ of streptomycin and 100 units/ml of penicillin for 96 hrs. Induction of DNA fragmentation was increased by 0.25-1 ㎍/㎖ OTA in a dose dependent manner in the embryonic midbrain cells. We also tested whether increase of apoptosis by OTA would be associated with change of apoptosis-related proteins (TNF-α and P^(53)) level in embryonic rnidbrain cells. OTA also increased TNF-α and P^(53) levels. These results show that OTA induced microcephaly in cultured whole embryos and this effect may be at least a part due to the induction of apoptosis and apoptosis-related protein levels of undifferentiated embryonic midbrain cells.