In order to investigate the distribution of suspended particulate matter of the surface water in the South Sea of Korea in early winter, the cruise results during 2 to 8 December 2004 were analyzed in relation to the hydrography.
The front was formed along the line connecting between Tsushima and Cheju Islands, which divided the water into two water masses; the coastal water with low temperature and low salinity, and the Tsushima Warm Current Water with high temperature and high salinity. In the coastal water the suspended particulte matter was 5.0-6.5 mg/l, while in the oceanic water suspended particulate matter was 4.5-5.0 mg/l. The coastal water showed higher mixing effects, compared to the oceanic area where vertical stratification was clearly formed. These indicate that the distribution of suspended particulate matter was affected by the stratification or mixing of the water column. Also it is suggested that the mixing effects of sea surface cooling and wind play an important role on the distribution of suspended particulate matter in the South Sea of Korea in winter time.
2002년 6월 26일, 8월 3일 및 9월 4일에 당년 발생한 덩굴에서 정부 중부 기부의 2마디씩 채취하여 삽목하였고, 2002년 7월 10일에 삽수의 마디수를 1~4개로 달리하여 삽목하여 겨울딸기의 발근 및 신초생육을 조사한 결과는 다음과 같다. 발근율은 8월 2일 삽목구에서 69.6%로 가장 높았고 근장은 6월 26일 삽목구에서 23.1 cm로 가장 길었다. 9월 4일 삽목구의 발근율 및 신초 생육이 현저히 떨어졌다. 삽수 채취 부위별 발근율은 덩굴 중간부위에서 55.4%로 가장 높았으며 그 다음이 정단부위에서 45.6%이었고 기부에서 25.4%로 가장 낮았다. 다른 형질들은 삽수 채취부위에 따른 차이가 없었다. 발근율과 신초발생률은 삽수마디수에 따른 차이가 없었으나 삽수당 근수 및 뿌리 건물중, 신초 생육은 삽수마디수가 많을수록 증가되었다.
Rapid progress in urbanization has resulted in a change of the micro climate, especially in the urban area. In order to investigate the phenomenon of the heat island in the residential micro climate, a field survey was carried out by 4 sets of the residential type in Jeonju under typical winter synoptic condition. As analytic methode, it is used the comparison on the relation of the Land-to-Coverage Rate to Heat Island and Oxygen Concentration. And as a key question it is asked how stable characteristics of the micro climate will result from the survey of the Heat Island and the Oxygen Concentration, used as indicator. To ensure the trustworthy result of research, it is calculated the critical influence of the wind velocity and the Land-to-Covearage Rate. As a result of comparative analysis, it could be confirmed that the local temperatures in all sets of the residential type were higher than the average temperature in Jeonju. But the housing type A "exclusive use for housing zone" has relativly the most stable and best living condition. On the contrary the residential type B and D has the worst toward the oxygen concentration in the time zone 9-12 a.m., which didn't reach the minimum of the oxygen concentration 20.5%. It means that the higer the development and population density is, the worse is the situation of the Quality of Life in the residential types in accordance with the heat island and oxygon concentration.
The change of chlorophyll fluorescence parameters, O-J-I-P transients and psbA gene expression were investigated in the leaves of Crinum asiaticum var. japonicum on the natural condition in winter, in order to elucidate physiological responses of photosystem Ⅱ (PSⅡ) activity to winter stresses. The photochemical efficiencies of PSⅡ, Fv/Fm, were significantly low in winter, contrary to its high value in summer. The values of 1-qN and 1-qP were lower in midday than at dawn or night both in summer and winter, although their decrease in midday was less in winter than in summer. In the O-J-I-P transients, the fluorescence intensity of J, I, P-step decreased remarkably depending on temperature drop in winter. And the D1 reaction center protein of PSⅡ decreased in late winter more than in early winter, concomitantly with relatively high content of description products of psbA gene in midday. These results indicate that low temperature in winter causes irreversible damage to PSⅡ and subsequently leads to cell death.
Pyrite contained in wasted ore dumps induces a strong acid environment when it contacts oxygenated rainfall. Present research was designed to evaluate the pollution of an area that is supposedly contaminated by pyrite of ore wasted dumps form in Chonju Il Mine. Measured are the pH and selected heavy metal elements in the supposedly polluted hydrologic system. The samples include three types those collected from the stream waters; those from the stream sediments; and those from the rice field soil scattered over the area. The dispersion path of the pollution source was also traced.
The pH of the hydrologic system ranged from 3.44 to 5.46, which clearly indicates that the area is on the acid environment. The pH tends to rise as the distance from the minehead increases. The content of heavy metal elements dissolved in the stream water varies as follows; Mn=69.73∼1.99ppm, Cd=0.02∼0.03ppm, Zn=0.77∼1.18ppm, Cu=0.04∼0.13ppm, Pb=0.22∼0.32ppm. The stream water in this state may induce serious heavy metal pollution to the agricultural land and the water for human life especially in the villages down the stream. The content of heavy metal elements dissolved in the stream sediment varies as follows; Mn=245.0∼4685.0ppm, Cd=10.0∼15.0ppm, Zn=105.0∼210.0ppm, Cu=65.0∼155.0ppm, Pb=90.0∼150.0ppm. The content of heavy metal elements dissolved in the rice field soil varies as follows; Mn=185.0∼260.0ppm, Cd=10.0∼15.0ppm, Zn=135.0∼180.0ppm, Cu=65.0∼90.0ppm, Pb=100.0∼130.0ppm. The pollution index in the stream sediment and the rice field soil is 1.36∼2.03, which shows that pollution had already begun all over the area where the samples were collected.
Based on the Results of Marine Meteorological and Oceanographical Observations (1966∼1987), oceanographic conditions of the Japan Sea in winter was studied in relation to the Japan Sea Proper Water (JSPW). The mean and dispersion of the deep water above 1000m depth are O.26±0.2℃ in temperature and 5.1±0.25 ㎖/ℓ in oxygen. The mean and dispersion of the bottom water below 1000m depth are 0.07±0.04℃ in temperature and 5.1±0.15㎖/ℓ in oxygen. The distributions of the temperature and dissolved oxygen in the deep water above 1000m depth are ranged wider than those of the bottom water below 1000m depth in T-S and T-O_2 diagrams. The bottom water are showed more homogeneous and smaller variations than the deep water in the characteristics of water mass. The deep water above 1000m depth is active in contact with the atmosphere. The JSPW similar to the above characteristics is showed in the open ocean of the north of 40°30` N, west of 138°E. Therefore, the deep water is formed probably by the open-ocean convection.
유채의 개화습성을 용당품종을 공시하여 분석한 결과를 다음과 같이 요약할 수 있다. 1. 개체당 총개화수는 1,400~l,500개이었고 개화는 4월13일에 시작하였으며, 개체당 개화소요 일수는 30일이었다. 2. 개체당 협수는 560~630게 정도이었고 개체당 1차 분지는 18~20개이었다. 3. 협을 형성하는데 평균 5일이 소요되있고 분지의 부위에 따른 개화속도는 차이가 없었다. 4. 분지별 개화기간은 상부분지로 갈수록 0.45일씩 단축되었고 분지부위가 상위로 갈수록 협수는 1개 정도씩 감소했다. 5. 유분함량은 하부와 상부분지에서 높고 중부분지에서는 유의하게 낮았다.
Field experiment was conducted to determine the optimum harvesting time in winter rape (Brassica napus L.) by investigating the percent oil, 1, 000 seed weight, seed yield, dehiscent pod ratio and oil yield at 46, 50, 54, 58, 62, 66 and 70 days after flowering. Variation of all characters with days after flowering could be explained significantly by second degree polynomial equations. Percent oil and 1, 000 seed weight increased until 62 days after flowering and thereafter these traits decreased, while seed yield increased to 58 days after flowering and thereafter this trait decreased. This controversy was due to the drastic increase in dehiscent pods beyond 58 days after flowering which brought loss in seed yield. These results suggest that optimum harvesting time is 58 days after flowering and it should not be later than 60 days after flowering.