H13 tool steels are widely used as metallic mold materials due to their high hardness and thermal stability. Recently, many studies are undertaken to satisfy the demands for manufacturing the complex shape of the mold using a 3D printing technique. It is reported that the mechanical properties of 3D printed materials are lower than those of commercial forged alloys owing to micropores. In this study, we investigate the effect of microstructures and defects on mechanical properties in the 3D printed H13 tool steels. H13 tool steel is fabricated using a selective laser melting(SLM) process with a scan speed of 200 mm/ s and a layer thickness of 25 μm. Microstructures are observed and porosities are measured by optical and scanning electron microscopy in the X-, Y-, and Z-directions with various the build heights. Tiny keyhole type pores are observed with a porosity of 0.4%, which shows the lowest porosity in the center region. The measured Vickers hardness is around 550 HV and the yield and tensile strength are 1400 and 1700 MPa, respectively. The tensile properties are predicted using two empirical equations through the measured values of the Vickers hardness. The prediction of tensile strength has high accuracy with the experimental data of the 3D printed H13 tool steel. The effects of porosities and unmelted powders on mechanical properties are also elucidated by the metallic fractography analysis to understand tensile and fracture behavior.
The design of non-precious electrocatalysts with low-cost, good stability, and an improved oxygen reduction reaction(ORR) to replace the platinium-based electrocatalyst is significant for application of fuel cells and metal-air batteries with high energy density. In this study, we synthesize iron-carbide(Fe3C) embedded nitrogen(N) doped carbon nanofiber(CNF) as electrocatalysts for ORRs using electrospinning, precursor deposition, and carbonization. To optimize electrochemical performance, we study the three stages according to different amounts of iron precursor. Among them, Fe3C-embedded N doped CNF-1 exhibits the most improved electrochemical performance with a high onset potential of −0.18 V, a high E1/2 of −0.29 V, and a nearly four-electron pathway (n = 3.77). In addition, Fe3C-embedded N doped CNF-1 displays exellent long-term stabillity with the lowest ΔE1/2= 8 mV compared to the other electrocatalysts. The improved electrochemical properties are attributed to synergestic effect of N-doping and well-dispersed iron carbide embedded in CNF. Consequently, Fe3C-embedded N doped CNF is a promising candidate for non-precious electrocatalysts for high-performance ORRs.
Although thin-film nanocomposite membranes (TFNs) have paved the way to develop high-performance reverse osmosis (RO) membranes, scale-up production of TFNs is still challenging issue. Herein, we introduced a novel preparation method for TFNs using spray-assisted nanofiller pre-deposition (Spray method) to circumvent the limitations in conventional method. The precise control of nanofiller (ZIF-8) loading was possible by simply varying the spraying ZIF-8 concentration. Most importantly, TFNs prepared by both Spray and conventional method showed similar RO performances, while Spray method only requires ~100 times minimized amount of ZIF-8 with an unprecedentedly short deposition time (< 1 min) ever reported. Our results revealed that Spray method would be promising for the scale-up of TFNs in terms of cost, time, and controllability.
In this study, we prepared thin composite membranes in which a support layer and a selective layer are covalently bonded in a simple method. The graft polymerization was carried out using UV/Ozone on a commercial Poly(sulfone) ultrafiltration membrane with Poly((ethylene glycol) methyl ether methacrylate) (PEGMA) possessing CO2 affinity. As a result, nano-pores on the surface membrane were covered with PEGMA. The covalent bonding of the composite membranes has the advantage of improving stability and weatherability. In addition, due to the thin selective layer formed by the graft polymerization, highly gas permeation characteristics are exhibited, and efficient process performance can be expected. The final composite membranes were investigated in terms of their chemical structures and elements, and gas permeation properties.
물 부족 현상의 해결책으로 저에너지 해수담수화가 가능한 정삼투 공정에 대한 연구가 활발히 진행되고 있다. 정삼투는 다양한 수처리 분야에 적용이 가능하며 낮은 비용, 낮은 에너지 소비량, 낮은 막오염의 장점을 가지며 이로 인해 최근 연구가 활발히 진행되고 있다. 최근에는 고분자 전해질을 이용한 유도용질, 온도감응성 고분자를 이용한 유도용질, 나노재료를 이용한 나노파티클 유도용질의 연구가 진행되었으나 상용화에는 이르지 못하고 있다. 본 연구에서는 분자량 약 800의 폴리에틸렌이민을 카복실산 금속염의 형태로 치환함으로써 물에 대한 용해도가 큰 PEI800-K을 합성하였다. 이를 유도용질로서 성능평가를 진행하여 다른 유도용액과 비교실험을 수행하고, 정삼투 후 유도용질의 회수를 위해 나노여과를 사용하였다.
Commercial polystyrene-based ion exchange membranes have simple manufacturing processes, they also possess the poor durability due to their brittleness. Poly(ethylene glycol)methyl ether methacrylate with hydrophilic side chain of poly(ethylene glycol) (PEG) was used as a co-monomer to make the membranes have improved flexibility. Hydrophilicity of the anion exchange membrane was able to be adjusted by varying the chain lengths of the PEG polymers. For the preparation of the anion exchange membranes, a porous PE substrate was immersed into monomer solutions and thermally polymerized and crosslinked. The prepared membranes were then subsequently post-aminated using trimethylamine(TMA). The prepared pore-filled anion exchange membranes were evaluated in terms of ion exchange capacity(IEC), electric resistance(ER) and water uptake.
The electrochemical properties of poly(a-methylbenzyl dipropargylamine) was studied by cyclic voltametry. Poly(a-methylbenzyl dipropargylamine) was prepared by the cyclopolymerization of a-methylbenzyl dipropargylamine in high yield. The photoluminescence peaks of the present polymer was observed at 443nm corresponding to the photon energy of 2.80 eV. The cyclovoltamograms of the polymer exhibited the irreversible electrochemical behaviors between the doping and undoping peaks. It was found that the kinetics of the redox process of poly(MBDA) might be mainly controlled by the electron transfer process from the experiment of the oxidation current density of poly(MBDA) versus the scan rate.
다양한 산업 부생가스에 포함되어 있는 CO를 고순도로 정제하면 고부가가치의 화학원료 및 신재생 연료로 사용되어 경제적인 효과를 기대할 수 있다. CO를 정제하기 위해서는 주로 CO2가 포함된 혼합기체로부터 CO를 분리해야 하지만 CO만을 선택적으로 투과시킬 수 있는 CO/CO2 선택성 분리막에 대한 연구는 전 세계적으로 미미한 상태이다. 본 연구에서는 CO2친화성을 갖는 성질을 도입하여 CO2의 투과를 방해하고 상대적으로 CO를 선택적으로 투과할 수 있는 분리막을 개발하고자 하였다. 유기 졸-겔 법을 이용하여 Network former(TAPM)의 아민 그룹과 network linker(HDI)의 이소시아네이트 그룹으로부터 우레아 결합이 포함된 다공성 네트워크 구조를 제조하였다. 다양한 기체에 대한 순수가스 투과테스트를 통해 투과도를 확인하였고, 분리 메커니즘을 규명하기 위해 CO, CO2,N2에 대한 흡착 등온선을 측정하였다.
온실가스의 주범인 이산화탄소를 효과적으로 분리하기 위하여 이산화탄소와 친화성이 좋은 에틸렌글리콜 사슬이 도입된 폴리설폰 기반의 고분자와 아민이 기능화된 ZIF8 무기입자 (ZIF8-A) 를 복합화한 유무기 복합 기체분리막 (MMM)을 제조하였다. 제조된 분리막은 XRD, TGA, FT-IR, SEM 및 NMR 분석을 통해 분리막의 구조와 물성특성을 확인하였다. CO2/N2, CO2/CH4에 대한 가스 투과 특성을 조사하였고, 그 결과 ZIF8-A 구조 내 아민 함량 증가에 따라 이산화탄소에 대한 투과도 및 선택도가 증가하는 경향을 나타냈다. 이는 ZIF8-A 구조 아민기능기와 에칠렌글라이콜 사슬과의 입자와의 계면저항성이 낮은 것에 기인한 것으로 판단하였다.
Carbon molecular sieve (CMS) membrane surpasses the upper-bound trade-off and plasticization phenomenon of polymer membrane. Recently, supported CMS membranes have been investigated to provide both high performance and mechanical strength. Herein, we have investigated the supported CMS hollow fiber membranes on low-cost alumina hollow fiber. To prepare the thin and uniform layers, the dip-coating parameters for intermediate and polymeric layers were varied in terms of the withdrawal rate and solution viscosity, respectively. Then, in order to confirm its feasibility in real industry, mixture gas was permeated through prepared CMS membranes. Moreover, the property of long-term stability was characterized in harsh conditions and further modified.
지구온난화의 주요 원인인 CO2로 인한 대기 기온 상승은 세계적으로 큰 화두가 되고 있다. 고분자 분리막을 이용한 이산화탄소 포집용 분리막 제조는 공정의 단순화와 가격적인 측면에서 우수하며 이산화탄소 분리성능이 우수하다는 장점이 있다. 본 연구에서는 Si-PEG를 이용한 이산화탄소 포집용 기체 분리막을 제조하였다. 분리막 제조에 앞서 Si-PEG를 합성한 뒤, 1H-NMR, GPC, FT-IR을 통해 합성의 유무를 판단하였다. 복합막 제조는 지지체위에 Si-PEG를 코팅하여 제조하였다. 코팅제는 Isocyanate, Si-PEG, 촉매를 사용하여 코팅을 실시하였으며 가교를 위하여 고온공정을 진행하였다. 제조한 기체투과 복합막은 50GPU의 이산화탄소 포집값을 보이며 질소에 대한 이산화탄소의 선택도는 15의 결과를 보여 기체분리막으로의 활용 가능성을 확인하였다.
Poly(ethylene glycol) (PEG)는 CO2와 높은 친화력을 가지고 있기 때문에 CO2 분리막으로 많이 사용되고 있다. 하지만 PEG의 이용한 기체분리막은 낮은 물성 및 높은 결정화도로 인해 제조에 어려움, 낮은 투과도 및 CO2에 대한 가소화 현상으로 인한 선택도의 감소 등의 문제점을 가지고 있다. 따라서 본 연구에서는 가교시스템을 도입하여 결정화도를 줄이고, 가교밀도를 조절함으로써 기계적 강도를 향상 시켰다. PEG와 가교가 가능한 모노머를 혼합한 후 자유라디칼 중합을 통해 PEG계 가교형 고분자를 제조하였고, time-lag 장비를 이용하여 기체투과 특성을 알아보았다.
An organic filler, bis-(N-α-amido-3,4-dihydroxyphenylalanine)-1,7-heptane dicarboxylate (DOPA-C7) is applied to gas separation membranes for CO2/N2 separation. The weak interaction between SBS and DOPA-C7 improves CO2/N2 selectivity, from 14.1 to 21.1 with increasing of CO2 permeability from 347.5 to 349.7 Barrer. This phenomenon is caused by the catechol group of DOPA-C7 that can work as a Lewis Base. However, the strongly interacting PEBAX/DOPA-C7 membranes show a typical trade-off behavior, a decrease in CO2 permeability and increase in CO2/N2 selectivity with the filler contents. This results demonstrate that interactions between the filler and polymeric matrix can cause negative effects on the gas separation performance. This work opens up the feasibility of using a catecholic compound in gas separation membranes.