검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 10,937

        861.
        2022.10 구독 인증기관·개인회원 무료
        The number of nuclear power plants that are permanently shut down or decommissioned is increasing worldwide, and accordingly, research is being conducted on an appropriate method for disposing of radioactive waste generated during the decommissioning of nuclear power plants. In the case of waste liquid generated during the decommissioning of nuclear power plants, it is important not only to efficiently reduce waste but also to secure the suitability of disposal. One of the solidification treatment methods for radioactive waste is cement solidification, but since cement solidification has poor solidification properties and generates a large amount of waste, improvement activities have been pursued. This study aims to develop high-performance cement-based materials and solidification treatment technology for solidification of liquid radioactive waste generated during nuclear decommissioning in order to improve the problems of cement solidification treatment method. For the development of polymer cement, epoxy resin and polyamine/amide mixed type and general Portland cement were mixed in various ratios. The most appropriate mixing ratio was 4.5:2, which showed the highest compressive strength. A simulated waste liquid was prepared by referring to the preliminary decommissioning plan of Shin-Kori Units 5 and 6, and it was dried and made into granules. Polymer cement was injected into a drum filled with granules by vacuum pressure to prepare a waste form matrix. In the solidification process, granules made by drying the waste liquid were used, and the solidification agent was filled in between the granules, so the total volume of solid radwaste was reduced compared to the conventional cement solidification treatment method. As a result, the amount of waste decreased to about 1/3, and the volume reduction rate increased by about 2.2 times. The compressive strength of 3,243 psi was confirmed in the disposability performance test for the manufactured solid samples. The compressive strength after the thermal cycling test, irradiation test, microorganism test, and immersion test was 2,257 psi, 2,306 psi, 4,530 psi, and 2,263 psi, respectively, exceeding the acceptance criteria of 500 psi. The leaching index was 7~13, and no free standing water was generated.
        866.
        2022.10 구독 인증기관·개인회원 무료
        Copper is used for deep geological disposal canisters of spent nuclear fuels, because of excellent corrosion resistance in an oxygen-free environment. However, sulfide formation during the long-term exposure under deep geological disposal condition can be harmful for the integrity of copper canisters. Sulfur around the canisters can diffuse along grain boundaries of copper, causing grain boundary embrittlement by the formation of copper sulfides at the grain boundaries. The development of copper alloys preventing the formation of copper sulfides along grain boundaries is essential for the longterm safety of copper canisters. In this research, the mechanisms of copper sulfide formation at the grain boundary are identified, and possible alloying elements to prevent the copper sulfide formation are searched through the first principle calculations of solute atom-vacancy binding energy and the molecular dynamics calculation of grain boundary segregation energy. The comparison with the experimental literature results on the mitigation of copper embrittlement confirmed that the theoretically identified mechanisms of copper sulfide formation and the selected alloy elements are valid. Thereafter, binary copper alloys were prepared by using a vacuum arc melting furnace. Sulfur was added during casting of the copper alloys to induce the sulfide formation. The cast alloys were cold-rolled into a plate after homogenization heat treatment. The microstructure and mechanical property of each alloy were investigated after recrystallization in a vacuum tube heat treatment furnace. The copper alloys developed in this study are expected to contribute in increasing the long-term safety of deep geological disposal copper canisters by reducing the embrittlement caused by the sulfide formation.
        867.
        2022.10 구독 인증기관·개인회원 무료
        The reliable information on the hydraulic characteristics of rock mass is one of the key site factors for design and construction of deep subsurface structures such as geological radioactive nuclear waste disposal repository, underground energy storage facility, underground research laboratory, etc. In order to avoid relying on foreign field test technology in future projects, we have independently designed and made integrated type main frame, 120 bar waterproof downhole sonde, and 1,200 m wireline cable winch through a series of R&D activities. They are core apparatuses of the Deep borehole Hydraulic Test System (DHTS). Integration of individual test equipment into a single main frame allows safe and efficient work in the harsh field condition. The DHTS was developed aiming primarily for constant pressure (head) injection test and pulse test in deep impermeable rock mass. The maximum testing depth of the DHTS is about 1,050 m from the surface. Using this system, it is possible to make precise stepwise control of downhole net injection pressure in less than 2.0 kgf/cm2 with dual hydraulic volume controller and also to inject and measure the very low flow rate below 0.01 l/min with micro flow rate injection/control module. Over the past two years, we have successfully completed more than 50 in situ hydraulic tests at 5 deep boreholes located in the Mesozoic granite and sedimentary rock regions in Korea. Among them, the deepest testing depth was more than 920 m. In this paper, the major characteristics of the DHTS are introduced and also some results obtained from the high precision field tests in the deep and low permeable rock mass environment are briefly discussed.
        870.
        2022.10 구독 인증기관·개인회원 무료
        In the geological disposal system whose host rock is crystalline rock, fractures play a significant role in the safety assessment as they are the main pathway of the radionuclide migration. From the perspective of long-term safety assessment, the properties of fractures can be changed by tectonic movement such as earthquake, uplift, etc. In general, methods for simulating fractures include Discrete Fracture Network (DFN), which directly simulates the fracture surface, and Equivalent Continuous Porous Media (ECPM), which is equivalent to the ratio of the fractures in a certain rock volume. DFN is generally appropriate for deterministic fractures with large scale and high flow velocity, but ECPM may be more appropriate for small scale and sporadically distributed stochastic fractures because the flow velocity is slow and thus the rock matrix diffusion needs to be considered. In fact, several commercial software, such as FracMan, are already in use to convert DFN to ECPM. However, in order to consider the change in properties of fractures due to tectonic movement in the long-term safety assessment, a model that converts DFN to ECPM needs to be modularized and embedded into the safety assessment model. In this study, therefore, an in-house MATLAB code was developed to convert DFN to ECPM, which can be used as a submodule. The algorithm of converting from DFN to ECPM basically followed the Oda’s method. As the first step of the algorithm, in order to obtain the volume ratio of the fracture in a certain mesh element, the cross-sectional area of the fracture and the mesh element was calculated. Then, porosities of each mesh element were calculated as the volume fraction of fractures passing through the mesh element. Based on the Oda’s method, the permeability tensors of each mesh element were calculated by using an empirical fracture tensor which is weighted by the cross-sectional area and transmissivity of each fracture. Finally, the newly developed module was verified by a benchmark test, in which the ECPM results converted from a certain DFN data by using the numerical module developed in this study were compared with those by using FracMan. The newly developed module will be installed in the process-based total system performance assessment framework (APro) being developed by KAERI.
        871.
        2022.10 구독 인증기관·개인회원 무료
        CYPRUS is a web-based waste disposal research comprehensive information management program developed by the Korea Atomic Energy Research Institute over three years from 2004. This program is stored as existing quality assurance documents and data, and the research results can be viewed at any time. In addition, it helps to perform all series of tasks related to the safety evaluation study of the repository in accordance with the quality assurance system. In the future, it is necessary to improve the user convenience by clarifying the relationship between FEP and scenarios and upgrading output functions such as visualization and automatic report generation. This purpose of this study is to research and develop the advanced program of CYPRUS. This study is based on building FEP, DIM and scenario databases. It is necessary to develop an algorithm to analyze and visualize the FEP, DIM and scenario relationship. This project is an integrated information processing platform for DB management and visualization considering user convenience. The first development goal is to build long-term evolutionary FEP, DIM, and scenarios as a database. The linkage by FEP item was designed in consideration of convenience by using a mixed delimiter of letters and numbers. This design provides information on detailed interactions and impacts between FEP items. Scenario data lists a series of events and characteristic change information for performance evaluation in chronological order. In addition, it includes information on FEP occurrence and mutual nutrition by period, and information on whether or not the repository performance is satisfied by item. The second development goal is to realize the relationship analysis and visualization function of FEP and scenario based on network analysis technique. Based on DIM, this function analyzes and visualizes interactions between FEPs in the same way as PID, RES, etc. In addition, this function analyzes FEP and DIM using network analysis technique and visualizes it as a diagram. The developed platform will be used to construct and visualize the FEP DB covering research results in various disposal research fields, to analyze and visualize the relationship between core FEP and scenarios, and finally to construct scenarios and calculation cases that are the evaluation target of the comprehensive performance evaluation model. In addition, it is expected to support the knowledge exchange of experts based on the FEP and scenario integrated information processing platform, and to utilize the platform itself as a part of the knowledge transfer system for knowledge preservation.
        873.
        2022.10 구독 인증기관·개인회원 무료
        Safety assessment is important for the radioactive waste repositories, and several methods are used to develop scenarios for the management of radioactive waste. The intent of the use of these scenarios is to show how the radio nuclides release can affect the safety of disposal system. It plays an essential role of providing scientific and technical information for performance assessment of safety functions. As important as scenario is, numerous studies for their own scenario development have been conducted in many countries. Scenario development methodology is basically divided into four categories: (1) judgmental, (2) fault/event-tree analysis, (3) simulation, and (4) systematic. Under numerous research, these methods have been developed in ways to strengthen the advantages and make up for the weakness. However, it was hard to find any judgmental or fault/event-tree analysis approach in recent safety assessments since they are not well-systemized and difficult to cover all scenarios. Simulation and systematic approaches are used broadly for their convenience of analyzing needed scenarios. Furthermore, several new methodologies, Process Influence Diagram (PID)/Rock Engineering System (RES)/Hybrid, were developed to reinforce the systematic approach in recent studies. Currently, a government project related to the disposal of spent nuclear fuel is in progress in Korea, and the scenario development for safety case is one of the important tasks. Therefore, it is necessary to identify the characteristics and strengths and weaknesses of the latest scenario development and analysis methods to create a unique methodology for Korea. In this paper, the existing methodologies and cases will be introduced, and the considerations for future scenario development will be summarized by considering those used in the nuclear field other than repository issues. Systematic approach, which is the mostly commonly used method, will be introduced in detail with its use in other countries at the subsequent companion paper entitled ‘Case Study for a Disposal Facility for the Spent Nuclear Fuel’.
        875.
        2022.10 구독 인증기관·개인회원 무료
        In Korea, research on the development of safety case, including the safety assessment of disposal facility for the spent nuclear fuel, is being conducted for long-term management planning. The safety assessment procedure on disposal facility for the spent nuclear fuel heavily involves creating scenarios in which radioactive materials from the repository reach the human biosphere by combining Features, Events and Processes (FEP) that describe processes or events occurring around the disposal area. Meanwhile, the general guidelines provided by the IAEA or top-tier regulatory requirements addressed by each country do not mention detailed methods of ‘how to develop scenarios by combining individual FEPs’. For this reason, the overall frameworks of developing scenarios are almost similar, but their details are quite different depending on situation. Therefore, in order to follow up and clearly analyze the methods of how to develop scenarios, it is necessary to understand and compare case studies performed by each institution. In the previous companion paper entitled ‘Research Status and Trends’, the characteristics and advantages/disadvantages of representative scenario development methods were described. In this paper, which is a next series of the companion papers, we investigate and review with a focus on details of scenario development methods officially documented. In particular, we summarize some cases for the most commonly utilized methods, which are categorized as the ‘systematic method’, and this method is addressed by Process Influence Diagram (PID) and Rock Engineering System (RES). The lessons-learned and insight of these approaches can be used to develop the scenarios for enhanced Korean disposal facility for the spent nuclear fuel in the future.
        879.
        2022.10 구독 인증기관·개인회원 무료
        In case a spent nuclear fuel transport cask is lost in the sea due to an accident during maritime transport, it is necessary to evaluate the critical depth by which the pressure resistance of the cask is maintained. A licensed type B package should maintain the integrity of containment boundary under water up to 200 m of depth. However, if the cask is damaged during accidents of severity excessing those of design basis accidents, or it is submerged in a sea deeper than 200 m, detailed analyses should be performed to evaluated the condition of the cask and possible scenarios for the release of radioactive contents contained in the cask. In this work, models to evaluate pressure resistance of an undamaged cask in the deep sea are developed and coded into a computer module. To ensure the reliability of the models and to maintain enough flexibility to account for a variety of input conditions, models in three different fidelities are utilized. A very sophisticated finite element analysis model is constructed to provide accurate response of containment boundary against external pressure. A simplified finite element model which can be easily generated with parameters derived from the dimensions and material properties of the cask. Lastly, mathematical formulas based on the shell theory are utilized to evaluate the stress and strain of cask body, lid and the bolts. The models in mathematical formula will be coded into computer model once they show good agreement with the other two model with much higher fidelity. The evaluation of the cask was largely divided into the lid, body, and bottom, bolts of the cask. It was confirmed that the internal stress of the cask was increased in accordance with the hydrostatic pressure. In particular, the lid and bottom have a circular plate shape and showed a similar deformation pattern with deflection at the center. The maximum stress occurred where the lid was in the center and the bottom was in contact with the body. Because the body was simplified and evaluated as a cylinder, only simple compression without torsion and bending was observed. The maximum stress occurred in the tangential direction from the inner side of the cylinder. The bolt connecting the lid and the body was subjected to both bending and tension at the same time, and the maximum stress was evaluated considering both tension and bending loads. In general, the results calculated by the formulas were evaluated to have higher maximum stresses than the analysis results of the simplified model. The results of the maximum stress evaluation in this study confirms that the mathematical models provide conservative results than the finite element models and can be used in the computer module.