검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1,732

        182.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Molybdenum disulfide ( MoS2) has been one of the most promising members of transition-metal dichalcogenides materials. Attributed to the excellent electrical performance and special physical properties, MoS2 has been broadly applied in semiconductor devices, such as field effect transistors (FETs). At present, the exploration of further improving the performance of MoS2- based FETs (such as increasing the carrier mobility and scaling) has encountered a bottleneck, and the application of high-κ gate dielectrics has become an effective approach to change this situation. Atomic layer deposition (ALD) enables high-quality integration of MoS2 and high-κ gate dielectrics at the atomic level. In this review, we summarize recent advances in the fabrication of two-dimensional MoS2 FETs using ALD high-κ materials as gate dielectrics. We first briefly discuss the research background of MoS2 FETs. Second, we expound the electrical and other essential properties of high-κ gate dielectrics, which are essential to the performance of MoS2 FETs. Finally, we focus on the advances in fabricating MoS2 FETs with ALD high-κ gate dielectrics on MoS2, as well as the optimized ALD processes. In addition, we also look forward to the development prospect of this field.
        5,200원
        183.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study examines the surface characteristics, electrical conductivity, electromagnetic wave blocking characteristics, infrared (IR) transmittance, stealth function, thermal characteristics, and moisture characteristics of IR thermal imaging cameras. Nylon film (NFi), nylon fabric (NFa), and 5 types of nylon mesh were selected as the base materials for aluminum sputtering, and aluminum sputtering was performed to study IR thermal imaging, color difference, temperature change, and so on, and the relationship with infrared transmittance was assessed. The electrical conductivity was measured and the aluminum-sputtered nylon film demonstrated 25.6kΩ of surface resistance and high electrical conductivity. In addition, the electromagnetic wave shielding characteristics of the sputtering-treated nylon film samples were noticeably increased as a result of aluminum sputtering treatment as measured by the electromagnetic wave blocking characteristics. When NFi and NFa samples with single-sided sputtering were placed on the human body (sputtering layer faced the outside air) and imaged using IR thermographic cameras, the sputtering layer displayed a color similar to the surroundings, showing a stealth effect. Moreover, the tighter the sample density, the better the stealth function. According to the L, a, b measurements, when the sputtering layer of NFi and NFa samples faced the outside air, the value of a was generally high, thereby demonstrating a concealing effect, and the E value was also high at 124.2 and 93.9, revealing a significant difference between the treated and untreated samples. This research may be applicable to various fields, such as the military wear, conductive sensors, electromagnetic wave shielding film, and others.
        4,800원
        184.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, 3D printing has been actively studied. A representative material in this 3D printing technology is plastic, and PLA, an eco-friendly material, is widely used. FDM is widely used as a way to output these PLA materials. However, this method lacks mechanical properties compared to injection-molded products as it is a method of stacking materials by melting. Therefore, in this study, using an FDM-type 3D printer, a tensile test was performed after printing a tensile specimen with PLA filament with the layer angle and layer density as control factors. After that, changes in tensile properties according to the layer angle and density were compared and evaluated. As a result, to improve the tensile strength, the layer density had to be considered, and to improve the elastic modulus, both the layer angle and the layer density had to be considered.
        4,000원
        185.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, additive manufacturing of a functionally graded material (FGM) as an alternative to joining dissimilar metals is investigated using directed energy deposition (DED). FGM consists of five different layers, which are mixtures of austenitic stainless steel (type 316 L) and low-alloy steel (LAS, ferritic steel) at ratios of 100:0 (A layer), 75:25 (B layer), 50:50 (C layer), 25:75 (D layer), and 0:100 (E layer), respectively, in each deposition layer. The FGM samples are successfully fabricated without cracks or delamination using the DED method, and specimens are characterized using optical and scanning electron microscopy to monitor their microstructures. In layers C and D of the sample, the tensile strength is determined to be very high owing to the formation of ferrite and martensite structures. However, the elongation is high in layers A and B, which contain a large fraction of austenite.
        4,000원
        186.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Since the beginning of the second Sino-Japanese war in 1937, the entire Korean Peninsula has entered a full-fledged wartime system. Japan enacted laws that strongly regulate the distribution of various resources for war, and the same was implemented in Joseon. In particular, as iron, copper, lead, tin, and aluminum were mobilized as raw materials for military supplies such as weapons, private distribution decreased significantly, which had a great impact on the construction industry. As the use of metal such as steel as building materials requires permission from the provincial governor, it has become difficult to supply and demand except for some military facilities. In addition, the Japanese Ministry of Commerce and Industry encouraged research and development and manufacturing to promote the so-called “substitute goods industry” to make up for the shortage of supplies. Products with improved performance through chemical treatment by injecting only a small amount of the same raw material than before or using alternative raw materials have been developed. It was intended to overcome the limitations of lack of raw materials through the chemical industry. In terms of building materials, various substitutes were produced due to the incorporation of petrochemicals and the use of synthetic resins. This trend continued even after the end of the war and served as one of the backgrounds for R&D and production of new materials without returning to the “substitute goods.”
        4,000원
        190.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        고려엉겅퀴(Cirsium setidens Nakai)는 여러해살이 초본식물로서 식용이 가능하며 곤드레라고 부르기도 한다. 최근 고려엉겅퀴에 여뀌못 털진딧물(Capitophorus elaeagni, Del Guercio)의 발생이 확인되어 재배농가의 피해가 예상되고 있다. 이에 대한 친환경적인 방제방법 구명을 위 해 시판 유기농업자재를 이용하여 고려엉겅퀴 식물체에 발생한 여뀌못털진딧물에 대한 방제효과를 검정한 결과 pyrethrins+paraffinic oils 이 98% 수준의 방제가를 보여주었으며 pyrethrins+matrine+pyroligneous 가 약 95%의 방제가를, azadirachtin+rotenone 성분이 75% 이상의 방제효과를 보여주었다. 이중 pyrethrins 성분이 가장 좋은 효과를 주는 것으로 여겨지며 유기농업자재 살포로 인한 약해는 발생하지 않았다.
        4,000원
        191.
        2022.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Fluorescent carbon nano-materials with quantum confinement and edge effects have recently piqued attention in a variety of applications, including biological imaging, drug delivery, optoelectronics and sensing. These nano-materials can be synthesized from a variety of carbon-based precursors using both top-down and bottom-up methods. Coal and its derivatives typically include a vast crystalline network and condensed aromatic ring cluster, which can be easily exfoliated by chemical, electrochemical, or physical processes to produce nano-materials. As a result, they are regarded as a low-cost, abundant and efficient carbon source for the fabrication of high-yield nano-materials. Nano-materials synthesized from coal-based precursors have outstanding fluorescence, photostability, biocompatibility and low toxicity, among other properties. Their properties in optical sensors, LED devices, bio-imaging, and photo and electro-catalyst applications have already been investigated. In this review, we have highlighted current developments in the synthesis, structural properties and fluorescence properties of nano-materials synthesized from coal-based precursors.
        7,800원
        192.
        2022.05 구독 인증기관·개인회원 무료
        As the design life of nuclear power plants are coming to the end, starting with Kori unit 1, nuclear power related organizations have been actively conducted research on the treatment of nuclear power plant decommissioning waste. In this study, among various types of radioactive waste, stabilization and volume reduction experiments were conducted on radioactive contaminated soil waste. Korea has no experience in decommissioning nuclear power plants, but a large amount of radioactively contaminated soil waste was generated during the decommissioning of the KAERI research reactor (TRIGA Mark- II) and the uranium conversion facility. This case shows the possibility of generating radioactive soil waste from nuclear power plants and nuclear-related facilities sites. Soil waste should be solidified, because its fluidity and dispersibility wastes specified in the notification of the Korea Nuclear Safety and Security Commission. In addition, the solidified waste forms should have sufficient mechanical strength and water resistance. Numerous minerals in the soil are components that can make glass and ceramics, for this reason, glass-ceramic sintered body can be made by appropriate heat and pressure. The sintering conditions of soil were optimized, in order to make better economical and more stable sintered body, some additives (such as additives for glass were mixed) with the soil and sintering experiments were conducted. Uncontaminated natural soil was collected and used for the experiment after air drying. Moisture content, pH, bulk density, and organic content were measured to understand the basic properties of soil, and physicochemical properties of the soil were identified by XRD, XRF, TG, and SEM-EDS analysis. In order to understand the distribution by particle size of the soil, it was divided into Sand (0.05–2 mm) and Fines (< 0.05 mm). The green body was manufactured in the form of a cylinder with a diameter of 13mm and a height of about 10mm. Appropriate pressure (> 150 MPa) was applied to the soil to make a green body, and appropriate heat (> 800°C) was applied to the sintered body to make a sintered body. The sintering was conducted in a muffle furnace in air conditions. The volume reduction and compressive strength of the sintered body for each condition were evaluated.
        193.
        2022.05 구독 인증기관·개인회원 무료
        Many countries are developing various mechanical cutting technologies to dismantle nuclear facility. However, most of mechanical cutting technologies have a problem like the degradation of tool life due to the Hard-Machining materials. To solve this problem, lab-scale test was performed with a Plasma Assisted Machining (PAM) technology and 25 mm of thickness Inconel 600 plate. Commonly, the strength of metals decreases by exposure at high temperature. And, previous study reported that strength of Inconel 600 is degraded above 500°C. This softening effect was applied to Inconel 600 cutting test. The optimal conditions such as the plasma torch power and the feed rate were determined by this study. As a result, the surface temperature of Inconel 600 was reached up to 500°C under the conditions which is 8.4 kW of plasma torch power and 150–250 mm·min−1 of feed rate. And it was confirmed that the tool life was improved under the conditions. In order to apply PAM for various Hard- Machining materials, it is necessary to investigate the softening temperature of Hard-Machining materials, the plasma torch power and feed rate.
        194.
        2022.05 구독 인증기관·개인회원 무료
        Radioactive Cesium is fission products of spent nuclear fuelwith high heat generating nuclide, having a 30 years half-life. Particularly, it is important to make stable waste form because Cs-137 have high solubility and mobility at ground water. The ceramic waste form has higher thermal and structural stability and lower solubility than glass and cement waste form. Various ceramic waste forms for Cs immobilization have been researched such as aluminosilicate (CsAlSi2O6), phosphate (CsZr2(PO4)3), titanate (CsxAlxTi8-XO16) and CsZr0.4W1.5O6. Cs pollucite is incorporated radio-Cesium to aluminosilicate framework by inorganic ion-exchange with zeolite. Therefore, it is an extremely stable structure. In previous study, we are prepared Cs pollucite pellet with various ratio of Cs precursor/matrix materials, and attempted to evaluate applicability as ceramic waste form. Cs pollucite is produced by mixing Mullite and SiO2 obtained by heat treatment Kaolinite with Cs2CO3 in ratios of 0.5, 0.6, 0.7, 0.8. Optimized ratio was 0.5 revealed single pollucite phase and the others exhibited CsAlSiO4 phase with pollucite. Cs pollucite of ratio 0.5 was pelletized under various conditions and evaluated performance as waste form. herein, the pellets were cracked on surface and edges broken. Therefore, Cs pollucite having high ratio of matrix materials contained Si and Al was prepared and pelletized, and then waste form was evaluated. The Cs pollucite powder is ratio of Cs precursor/matrix materials were 0.1, 0.2, 0.3, 0.4. Pollucite powder was mixed with 1.5, 2.0wt% Polyvinyl alcohol as binder, and dried at 70°C for overnight. Afterward, these powders obtained were pressed using punch-die apparatus at 50, 100 bar for 1 hour and the pellets with about dia. 25 mm and height 10 mm was acquired. These pellets were sintered at 1,400°C for 5 hours. Subsequently, the waste forms were evaluated physicochemical test such as compression strength, thermal conductivity, thermal expansion and leaching properties analysis.
        196.
        2022.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        자연발화 현상은 산업현장 또는 우리 생활 속 어디에서나 발생하며 물질이 대기 중에서 점 화원 없이 스스로 발화되는 현상이다. 화학반응 속도가 빨라져 발생하는 열이 증가하게 되어 자연발화의 위험성은 더욱 커진다. 본 연구에서는 식품과 화장품 소재로 이용되는 안전한 원료를 배합하여 다양한 자연발화 현상 중 특히 석탄 자연발화 방지제를 제조하였다. 인도네시아산 저열량, 저급탄에 대한 Lab 과 Field Test를 통하여 석탄 자연발화 억제 효과를 확인하였다. 옥외 현장 테스트 결과, 비교군(90일 후 발화)에 비하여 본 연구에서 제조한 발화방지제는 120일 이상 우수한 자연 발화억제 효과를 나타내었으 며 실내저탄장에서 50일 동안의 CO의 농도변화를 비교하여 CO 농도 제어 효과를 확인하였다. 비교군 인 석탄, 기존의 발화 방지 방법보다 우수한 결과를 확인하였다. 또한, 환경을 고려한 토양 및 수질 시 험, 작업 근로자를 고려한 발화방지제의 MSDS, 수질, 안 자극 등의 공인시험을 통하여 환경과 근로자 작업환경의 안전성 등을 연구하여 2024년부터 적용되는 실내저탄장용 석탄 발화방지제의 가능성을 확인 할 수 있었다.
        4,000원
        197.
        2022.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The capacity of high nickel Li(NixCoyMn1-x-y)O2 (NCM, x ≥ 0.8) cathodes is known to rapidly decline, a serious problem that needs to be solved in a timely manner. It was reported that cathode materials with the {010} plane exposed toward the outside, i.e., a radial structure, can provide facile Li+ diffusion paths and stress buffer during repeated cycles. In addition, cathodes with a core-shell composition gradient are of great interest. For example, a stable surface structure can be achieved using relatively low nickel content on the surface. In this study, precursors of the high-nickel NCM were synthesized by coprecipitation in ambient atmosphere. Then, a transition metal solution for coprecipitation was replaced with a low nickel content and the coprecipitation reaction proceeded for the desired time. The electrochemical analysis of the core-shell cathode showed a capacity retention of 94 % after 100 cycles, compared to the initial discharge capacity of 184.74 mA h/g. The rate capability test also confirmed that the core-shell cathode had enhanced kinetics during charging and discharging at 1 A/g.
        4,000원
        198.
        2022.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        서해병 폐기물 배출해역 오염심화구역의 퇴적물 정화·복원을 위해 2013, 2014, 2016, 2017년에 준설토를 피복하였다. 피복 효과 평 가를 위해 배출해역 내 피복구역(5개 정점)과 자연회복구역(2개 정점)을 설정하고 2014년부터 2020년까지 연 1회 구역별 표층 퇴적물을 채취 하여 퇴적물 물리·화학적 특성 및 저서동물상을 분석하였다. 퇴적물 평균 입도(Mz)는 자연회복구역에서 5.91~7.64 Φ로 세립질이었고 피복구 역에서는 준설토의 영향으로 1.47~3.01 Φ의 조립질 퇴적물로 구성되어 있었다. 유기물 및 중금속 함량은 피복구역에서 자연회복구역 대비 약 50 % 낮아(p<0.05) 준설토 피복 효과가 있는 것으로 판단되었다. 대형저서동물 분석 결과에서는 피복구역의 출현종수, 생태지수가 자연회 복구역보다 낮게 나타났다(p<0.05). 피복구역의 출현종수 및 생태지수의 시계열 분석 결과에서는 2013, 2014년 피복 이후 초기 4년간 증가하 다가 이후 감소하는 경향을 보였다. 이는 피복으로 인해 빠른 성장과 짧은 수명의 특징을 보이는 기회종 생물들이 피복 초기에 우세하다가 2016, 2017년에 추가로 피복이 진행됨에 따라 서식환경이 다시 교란되어 나타난 현상으로 추정된다. AMBI는 자연회복구역 및 피복구역에서 모두 2등급(Good), BPI는 1~2등급 수준을 유지하고 있어 건강한 저서상태로 평가되었다. 따라서 폐기물 배출해역의 오염퇴적물 정화 및 저 서생태계 복원을 위한 준설토 피복은 오염도 저감효과는 나타나지만 저서생태계의 측면에서는 장기적인 모니터링을 통해 회복추이를 관찰 해야 할 것으로 판단된다. 또한 향후 배출해역의 오염심화구역 정화 복원 사업 확대 시 적응적 관리가 필요할 것으로 판단된다.
        4,300원
        199.
        2022.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Thermoelectric materials can reversely convert heat and electricity into each other; therefore, they can be very useful for energy harvesting from heat waste. Among many thermoelectrical materials, SnSe exhibits outstanding thermoelectric performance along the particular direction of a single crystal. However, single-crystal SnSe has poor mechanical properties and thus it is difficult to apply for mass production. Therefore, polycrystalline SnSe materials may be used to replace single-crystal SnSe by overcoming its inferior thermoelectric performance owing to surface oxidation. Considerable efforts are currently focused on enhancing the thermoelectric performance of polycrystalline SnSe. In this study, we briefly review various enhancement methods for SnSe thermoelectric materials, including doping, texturing, and nano-structuring. Finally, we discuss the future prospects of SnSe thermoelectric powder materials.
        4,000원
        200.
        2022.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        선사시대 사회상을 설명할 수 있는 유력한 자료로서 석기 석재 연구의 필요성에 대한 인식이 높아 지기 시작한 것은 2000년대 이후이다. 그때부터 석재 동정과 석재 산지 분석 결과 등이 발굴 보고서 에 포함되기 시작하였으나, 지질학 전공자에 의한 초기의 연구가 고고학 전공자의 자체적인 연구로까 지 이어지지는 못하였다. 그에 더해 발굴 보고서에 석재 동정 결과마저 언급되지 않는 경우도 점차 증 가하고 있다. 이러한 현상에는 비파괴 분석, 육안관찰 등에 의존해야 하는 석기 석재 동정의 오류 가 능성, 연구자에 따른 동정의 차이 등 연구 첫 단계인 석재 동정부터 여러 문제점이 있다는 것에 그 요인이 있을 것이다. 이러한 문제점에 대한 대안의 하나로 석재 환경 조사를 실시하였다. 조사 대상 지역은 상대적으로 청동기시대의 유적이 다수 발견되고 산지에서 저지로 흐르는 하천이 여럿 위치하는 등 고고학적, 지 형적 조건을 고려하여 부여 서북부 지역을 선정하였다. 석재 환경 조사는 ‘1. 조사 대상 지역 선정 → 2. 조사 지역 내 유적 출토 석기 석재의 현황 파악 → 3. 지질도 등을 통한 지질 환경 파악 및 석 재 채집 지점 선정 → 4. 현지 석재 채집 → 5. 채집 석재 동정 → 6. 석기 석재와의 비교 검토’의 순서로 진행되었으며, 총 10개 지점에서 석재를 채집하여 석재 동정 및 주변 지역 출토 석기 석재와 비교 검토를 실시하였다. 이러한 석재 환경 조사는 유적 주변에서 채집된 석재를 기준으로 유적 출토 석기 석재를 동정하기 위한 작업으로, 석재 연구에 있어 가장 문제가 되는 석재 동정에 하나의 유효한 방법이 될 수 있을 것이다.
        6,000원