검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 257

        27.
        2022.10 구독 인증기관·개인회원 무료
        According to the ‘Basic Plan for High-Level Radioactive Waste Management (draft)’, the total amount of CANDU spent nuclear fuel is expected to be approximately 660,000 bundles. To safely and efficiently transport this amount to interim storage facilities, it is essential to develop a large-capacity transport cask. Therefore, we have been developing a large-capacity PHWR spent nuclear fuel transport cask, called the KTC-360 transport cask. According to the transport-cask related regulations, the KTC-360 transport cask was classified as a Type B package, and such packages must be able to withstand a temperature of 800°C for a period of 30 min. It is desirable to conduct a test using a fullscale model of a shipping package when performing tests to evaluate its integrity. However, it is costly to perform a test using a full-scale model. Therefore, to evaluate the thermal integrity of the KTC-360 transport cask, the fire test was conducted using a slice model. For comparison purposes, the fire test was also carried out using a 1/4 scale model. In the fire test using a slice model and in the fire test using a 1/4 scale model, the maximum temperature of the cask body was lower than the permitted maximum temperature limit. Therefore, the thermal integrity of the KTC-360 transport cask could be considered to be maintained. The temperature results from the fire test using a slice model were higher than those of the fire test using a 1/4 scale model. Therefore, the effect of flame on a transport cask without combustible materials, such as the KTC-360 transport cask, seems to be affected by the reduction in the time rather than the size reduction.
        29.
        2022.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The safety of a KTC-360 transport cask, a large-capacity pressurized heavy-water reactor transport cask that transports CANDU spent nuclear fuel discharged from the reactor after burning in a pressurized heavy-water reactor, must be demonstrated under the normal transport and accident conditions specified under transport cask regulations. To confirm the thermal integrity of this cask under normal transport and accident conditions, high-temperature and fire tests were performed using a one-third slice model of an actual KTC-360 cask. The results revealed that the surface temperature of the cask was 62°C, indicating that such casks must be transported separately. The highest temperature of the CANDU spent nuclear fuel was predicted to be lower than the melting temperature of Zircaloy-4, which was the sheath material used. Therefore, if normal operating conditions are applied, the thermal integrity of a KTC-360 cask can be maintained under normal transport conditions. The fire test revealed that the maximum temperatures of the structural materials, stainless steel, and carbon steel were 446°C lower than the permitted maximum temperatures, proving the thermal integrity of the cask under fire accident conditions.
        4,000원
        30.
        2022.05 구독 인증기관·개인회원 무료
        Currently, the HI-STAR 63 transport cask, developed to transport CANDU spent nuclear fuel from the wet storage pool to the dry storage facility which is called the MACSTOR/KN-400, has a transport capacity of 120 bundles, which is unfavorable when considering transportation costs and other related aspects. According to the ‘Basic Plan for High-Level Radioactive Waste Management (draft)’, the total amount of CANDU spent nuclear fuel is expected to be approximately 660,000 bundles. To safely and efficiently transport this amount to interim storage facilities, it is essential to develop a large-capacity transport cask. Therefore, we have been developing a large-capacity PHWR spent nuclear fuel transport cask, called the KTC-360 transport cask. According to the transport-cask related regulations, the KTC-360 transport cask was classified as a Type B package, and such packages need to maintain integrity under the normal transport and accident conditions described in these regulations. To prove the thermal integrity of this cask under the normal transport and accident conditions, high-temperature and fire tests were performed using a one-third slice model of an actual KTC-360 cask. The results revealed that the surface temperature of the cask was 62°C, indicating that such casks need to be transported exclusively. The highest temperature of the CANDU spent nuclear fuel was predicted to be lower than the melting temperature of Zircaloy-4, which was the sheath material used. Therefore, if normal operating conditions are applied, the thermal integrity of a KTC- 360 cask could be maintained under normal transport conditions. The fire test revealed that the maximum temperatures of the structural materials, stainless steel, and carbon steel, were 446°C lower than the permitted maximum temperatures, proving the thermal integrity of the cask under fireaccident conditions.
        38.
        2021.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        최근 선박용 연료유에 대한 황 함유량 규제를 준수하기 위해 저유황유의 수요가 증가하고 있다. 그러나 저유황유를 공급하는 시기, 지역, 회사 별로 그 품질이 상이함에 따라 선내 연료유 저장탱크에서는 과도한 슬러지가 발생하는 등 혼합 안정성에 대한 문제가 제기되고 있다. 따라서 본 연구는 초음파의 캐비테이션 현상을 이용하여 저유황유의 품질 향상을 하고자 하였다. 선내 저장 탱크에서 이종의 연료유가 혼합되는 상황을 모사하기 위해 두 가지 종류의 저유황유(황 함유량 0.5 % 이하 MGO, MDO)를 혼합하여 시료유로 사용하였다. 원료유와 50 wt.% 씩 혼합한 시료유를 120분 동안 초음파 처리하였으며, 40분 주기로 채취된 샘플은 GC/MS 분석을 수행하여 초음파 조사 시간에 따른 시료유의 조성 변화를 분석하였다. 연구결과, 초음파의 캐비테이션 효과로 인하여 화학결합이 깨지면서 MGO 내 존재하는 고분자량 화합물의 감소와 저분자량의 화합물 증가가 관찰되었다. MDO와 혼합유의 경우, 초음파 조사 후 저분자 화합물에 대한 상대 존재 비의 부분적 증가가 관찰되었지만 시간과 상대 존재비 사이의 상관관계는 관찰되지 않았다.
        4,000원
        1 2 3 4 5