검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 713

        21.
        2023.10 구독 인증기관·개인회원 무료
        Climate change and biological invasions are the greatest threats to biodiversity, agriculture, health and the global economy. Tomato leafminer(Tuta absoluta) (Meyrick) (Lepidoptera: Gelechiidae) is one of the most important threats to agriculture worldwide. This pest is characterized by rapid reproduction, strong dispersal ability, and highly overlapping of generations. Plants are damaged by direct feeding on leaves, stems, buds, calyces, young ripe fruits and by the invasion of secondary pathogens which enter through the wounds made by the pest. Since it invaded Spain in 2006, it has spread to Europe, the Mediterranean region, and, in 2010, to some countries in Central Asia and Southeast Asia. In East Asia, Tomato leafminer was first detected in China in Yili, Xinjiang Uygur Autonomous Region, in 2017. There is a possibility that this pest will invade South Korea as well. This study provides this by the use of MaxEnt algorithm for modelling the potential geographical distribution of Tomato Leafminer in South Korea Using presence-only data.
        25.
        2023.07 구독 인증기관·개인회원 무료
        Civil defense originally refers to the protection of civilians in the events of war-related disasters. Today, it encompasses a wide range of protection, rescue, and recovery activities not only aimed at minimizing the damage caused by war but also addressing natural and man-made disasters such as wildfires, typhoons, and floods. Civil defense uniforms are worn by volunteers who participate in civil defense training organized by practitioners, government officials, and military personnel. Therefore, more than 3,350,000 persons (+6.5 % of the Korean population) likely should wear civil defense uniforms. As such, the functionalities of civil defense uniforms need to be reexamined and improved in response to the wider and newer responsibilities of the civil defense system to protect the civil defense personnel from potential hazards and to help better serve the Korean citizens. The essential functions of civil defense uniforms were proposed by analyzing various civil defense activities. Per the level and type of safety hazards, the design and materials for civil defense uniforms should ideally differ, similar to civil defense uniforms in other countries. We surveyed the current Korean civil defense uniforms’ design, material compositions and important functionalities such as water repellency, water pressure resistance, and flame resistance. Compared to common functional workwear, we suggest room for improvement in the functional properties of civil defense uniforms. This research paves a new road for the functional design of civil defense uniforms to address a wider range of hazards, potentially leading to rational guidelines for protective workwear and government uniform development.
        26.
        2023.07 구독 인증기관·개인회원 무료
        Blockchain is an immutable ledger that records transactions and tracks assets using a common communication protocol. It stores a copy of the blockchain and implements a consensus function to verify transactions. Blockchain is applied to industries beyond finance, such as retail, to maintain security and transparency. Consumers with knowledge of blockchain technology are likely to be affected when evaluating products with blockchain embedded, impacting their product evaluation. The study investigates the impact of blockchain technology on consumers' product evaluation and how knowledge of blockchain and product quality moderate its effects.
        27.
        2023.07 구독 인증기관·개인회원 무료
        This paper examines how consumers evaluate digital products with multiple Non-fungible Tokens (NFTs), which are blockchain-enabled cryptographic assets that represent proof-of-ownership for digital objects. The study predicts that people prefer fractioned NFTs (unique fractions of a digital object) versus duplicated NFTs (identical digital objects with distinct numbers) due to their preference for uniqueness. The study also examines the moderating role of product attributes, predicting that preferences for fractioned NFTs will be reduced when the product provides unique aspects, such as a serial number.
        28.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The Animal and Plant Quarantine Agency conducts a targeted sampling plan and analysis for veterinary drugs within the country every year. Target compounds included tetrachlorvinphos as an organophosphate, diminazene as an anti-infective medication, ketoprofen as a nonsteroidal anti-inflammatory drug, triclabendazole and clorsulon as flukicides in 2022. These compounds were not included in National Residues Program (NRP), despite their high sales ranking. A total of 94 bovine muscle samples and 20 equine muscle samples were collected from various locations across the country. The analysis of target compounds in muscle was performed using LC-MS/MS coupled with Food code 8.3.1 revised in 2022. A 2 g sample of muscle tissue was extracted using a water: acetonitrile (1:4, v/v) solution, then cleaned up with C18 and hexane saturated with acetonitrile. Compounds were separated with C18 column and mobile phases consisted of 0.1% formic acid in water (A) and 0.1% formic acid in acetonitrile (B). All analytes exhibited good linearity with correlation coefficients (R2) higher than 0.992. The limit of quantification (LOQ) of these compounds ranged from 0.21 to 2.79 μg/kg except for diminazene (3.85~6.86 μg/kg). The average recoveries of these analytes were 89.45~129.13% in muscle at spiked level of 10 or 20 μg/kg. Relative standard deviations (%) (intra-day and inter-day) were lower than 20% for all target compounds, except for diminazene and triclabendazole, whose intra-day RSD % was slightly higher than 20% in equine muscle. Testing confirmed that all 94 bovine and 20 equine muscle samples from 9 provinces were free from residues of veterinary drugs. Monitoring of compounds not included in the NRP should continue to ensure consumer health and food safety.
        4,000원
        29.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Babesiosis is a tick-borne disease caused by intraerythrocytic protozoa. Despite the increasing acknowledgement that babesiosis represents a threat to animal and human health, to date there have been few studies focusing on the disease in the Republic of Korea (ROK). In the present study, we report a Babesia capreoli infection in an Ixodes nipponensis tick obtained from a Korean water deer (Hydropotes inermis argyropus). The tick was identified with polymerase chain reaction analysis as I. nipponensis (Japanese hard tick). A phylogenetic analysis based on the 18S rRNA gene sequences revealed that the isolate found in I. nipponensis belonged to the B. capreoli lineage and was distinct from the Asian, European, and North American lineages of Babesia divergens. Although our isolate belonged to the B. capreoli lineage it did not form a cluster with others isolates in the same lineage; this may be due to differences in the tick species that transmit B. capreoli or in the host species. We were unable to identify the reservoir host for our case of B. capreoli transmission, though regional ticks may be the primary vector. This study confirms the presence of B. capreoli in the ROK, and its presence suggests that further study is warranted to determine its prevalence and pathogenicity in wild and domesticated animals.
        4,000원
        30.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Macrophages secrete various cytokines and inflammatory mediators, resulting in playing critical roles in inflammation and immunity. In this study, we investigated anti-inflammatory and immune enhancing properties of PB203, which is a water-soluble extract powder from the fruit of Actinidia polygama, in macrophages. A. polygama is a medicinal plant traditionally known to treat abdominal pain, stroke and rheumatoid arthritis. However, the molecular mechanism for the immune modulation of PB203 is still unclear. Therefore, we assessed the effects of PB203 on the lipopolysaccharide (LPS)-induced inflammation and immune activation, and elucidated its action mechanism in mouse macrophage, RAW264.7 cells. PB203 significantly suppressed not only the levels of nitric oxide (NO), prostaglandin E2, tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), but also the mRNA expression of inducible NO synthase, cyclooxygenase-2, TNF-α and IL-1β in LPS-stimulated RAW264.7 cells. We also found that these anti-inflammatory activities of PB203 were mediated through the inhibition of toll-like receptor 4 and nuclear factor kappa B (NF-κB) induced by LPS. On the other hand, in normal macrophages, PB203 dose-dependently elevated the gene expression of immunomodulators including granulocyte-macrophage colony-stimulating factor, granulocyte colony-stimulating factor, monocyte chemoattractant protein-1 and TNF-α in a statistically significant manner. The expression of IL-10, IL-1β, IL-6, and interferon-γ were also remarkably upregulated by the treatment of 500 μg/mL PB203. In addition, PB203-mediated production of NO and TNF-α was attenuated by NF-κB inhibition in RAW264.7 cells. Interestingly, PB203 promoted the production of nuclear factor erythroid-2-related factor 2, resulting in the increased level of heme oxygenase-1, which is a representative antioxidant enzyme, in both LPS-stimulated and normal RAW264.7 cells. Taken all together, these results suggest that PB203 may have great potential as the candidate of anti-inflammatory agent for improving inflammatory diseases or immune enhancing agent for preventing infectious diseases. Keywords: Actinidia polygama extract (PB203); macrophages; immunomodulator; nuclear factor kappa B (NF-κB); heme oxygenase-1 (HO-1)
        5,200원
        37.
        2023.05 구독 인증기관·개인회원 무료
        Low- and intermediate-level radioactive waste for permanent disposal often contains organic complexing agents, so-called chelating agents. Organic complexing agents, which are polycarboxylic acids, can increase the mobility of radionuclides into the environment by forming water-soluble complexes with most heavy metals. Therefore, analyzing the complexing agents in radioactive waste is crucial for comprehensive management of nuclear wastes. According to regulatory guidelines, specifically Notice No. 2021-16 issued by the Nuclear Safety and Security Commission, the determination of chelating agent content in radioactive waste materials is required to ensure proper management and safe disposal. However, only a few methods are available to analyze the chelators in various matrices such as concrete, metals, soil, and mixed solid wastes like plastics, vinyl, and rubber. Recently, we found a UV-Vis method based on an enzymatic reaction is inadequate for analyzing citric acid in radioactive waste with a complex matrix like concrete. To address this, we developed a method to determine the contents of EDTA and NTA using a UV-Vis spectrophotometer and citric acid using ion chromatography. The results showed good validity and reliability to determine the chelating agents in various radioactive wastes.
        38.
        2023.05 구독 인증기관·개인회원 무료
        During the decommissioning of a nuclear power plant, the structures must be dismantled to a disposal size. Thermal cutting methods are used to reduce metal structures to a disposal size. When metal is cut using thermal cutting methods, aerosols of 1 μm or less are generated. To protect workers from aerosols in the work environment during cutting, it is necessary to understand the characteristics of the aerosols generated during the cutting process. In this study, changes in aerosol characteristics in the working environment were observed during metal thermal cutting. The cutting was done using the plasma arc cutting method. To simulate the aerosols generated during metal cutting in the decommissioning of a nuclear power plant, a non-radioactive stainless steel plate with a thickness of 20 mm was cut. The cutting condition was set to plasma current: 80 A cutting speed: 100 mm/min. The aerosols generated during cutting were measured using a highresolution aerosol measurement device called HR-ELPI+ (Dekati®). The HR-ELPI+ is an instrument that can measure the range of aerodynamic diameter from 0.006 μm to 10 μm divided into 500 channels. Using the HR-ELPI+, the number concentration of aerosols generated during the cutting process was measured in real-time. We measured the aerosols generated during cutting at regular intervals from the beginning of cutting. The analyzed aerosol concentration increased almost 10 times, from 5.22×106 [1/cm3] at the start of cutting to 6.03×107 [1/cm3] at the end. To investigate the characteristics of the distribution, we calculated the Count Median Aerodynamic Diameter (CMAD), which showed that the overall diameter of the aerosol increased from 0.0848 μm at the start of cutting to 0.1247 μm at the end of the cutting. The calculation results were compared with the concentration by diameter over time. During the cutting process, particles with a diameter of 0.06 μm or smaller were continuously measured. In comparison, particles with a diameter of 0.2 μm or larger were found to increase in concentration after a certain time following the start of cutting. In addition, when the aerosol was measured after the cutting process had ended, particles with a diameter of 0.06 μm or less, which were measured during cutting, were hardly detected. These results show that the nucleation-sized aerosols are generated during the cutting process, which can explain the measurement of small particles at the beginning of cutting. In addition, it can be speculated that the generated aerosols undergo a process of growth by contact with the atmosphere. This study presents the results of real-time aerosol analysis during the plasma arc cutting of stainless steel. This study shows the generation of nucleation-sized particles at the beginning of the cutting process and the subsequent increase in the aerosol particle size over time at the worksite. The analysis results can characterize the size of aerosol particles that workers may inhale during the dismantling of nuclear power plants.
        39.
        2023.05 구독 인증기관·개인회원 무료
        To prevent the release of radionuclides into the biosphere, disposal facilities for radioactive waste should be located to provide isolation from the accessible biosphere for tens of thousands to a million years after closure. During the period of interest, the constantly evolving natural environment and possible geological events of the site can cause disturbances to the containment function of the repository. Thus, for the long-term safety assessment of the repository, the possible long-term change of natural barrier should be considered. Due to the characteristics of radionuclides that transport mainly through the groundwater, understanding the long-term evolution of groundwater flow and geochemical properties is essential to assess the long-term changes in the natural barrier performance. The changes in characteristics of natural rocks and geological structures are one of the main factors that determine the hydrological and geochemical characteristics of the deep underground. In this study, we plan to develop a methodology to estimate these future geological evolutions in order to assess the possibility of hazardous events of the site that can affect hydrological or geochemical properties over the period of interest, and also in order to verify the change in the geological environment is within the safe performance range even after the period of interest. However, it is very unreliable to predict future changes in the natural environment because it is very heterogeneous, complex, and difficult to observe directly. For the preliminary study of the project, we reviewed cases of future evolution prediction researches with regard to the geological environment of disposal site and methods they applied to reduce the uncertainty of the prediction. The results will be used to establish basic data for future studies on the long-term evolution of hydraulic-mechanics performance of natural barrier and long-term evolution of geochemical performance around KURT site. In addition, it can contribute to construct long-term evolution scenario of the geological environment around future URL site.
        40.
        2023.05 구독 인증기관·개인회원 무료
        A radioactive waste repository consists of engineered barriers and natural barriers and must be safely managed after isolation. Geologic events in natural barriers should be categorized and evaluated according to their magnitude to assess the present and future stability of disposal. Among the longterm evolutionary elements of natural barriers, faults are a small portion of the Earth’s crust. Still, they play an important role in nuclide transport as conduits for fluids moving deep underground. In addition, the physical and chemical properties of fault rocks are useful for understanding the longterm and short-term behavior of faults. Paleomagnetic research has been used extensively and successfully for igneous, metamorphic, and sedimentary rocks. In addition, magnetic characterization of fault rocks can be used to describe faults or infer the timing of major geological events along fault zones. Components of magnetization defined in fault-breccias were attributed to chemical processes associated with hydrothermal mineralization that accompanied or post-dated tectonic activity along the fault. The study of magnetic minerals in fault rocks can be used as “strain indicators”, “geothermometers”, etc. This study is a preliminary test of magnetic properties using fault gouges. Fault gouges are not well preserved in typical terrestrial environments. Access to fresh gouges typically requires trenching through faults or sampling with a core drill. Fortunately, it is a magnetic property study using a fault gouge that exists on the inner wall of KURT (KAERI Underground Research Tunnel). This is to identify the motion history of the fault and, furthermore, to understand the stress structure at the time of fault creation. In addition, it can be presented as evidence for evaluating faults that may appear in future URL (Underground Research Laboratory).
        1 2 3 4 5