검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 838

        21.
        2023.10 구독 인증기관·개인회원 무료
        뿌리응애류는 양파, 마늘, 생강, 백합 등의 뿌리를 가해한다. 최근 백합재배지에서는 질경이모자이크바이러 스(Plantago asiatica mosaic virus, PLAMV)에 의한 잎의 괴사 피해가 확산되고 있다. 태안 백합재배지에서 PlAMV 가 감염된 백합을 채집하여 구근을 조사한 결과, 식물체 당 뿌리응애 100개체 이상이 발견되었으며 Rhizoglyphus robini로 동정되었다. 이 종이 PlAMV의 보독여부를 확인하기 위해 채집된 R. robini에서 RNA를 추출하여 RT-PCR로 진단한 결과, 모든 개체에서 PlAMV가 확인되었다. 본 연구는 뿌리응애가 백합 구근 뿌리를 먹으면서 만든 상처를 통해 PlAMV가 전염될 수 있다는 가능성을 제시한다.
        22.
        2023.10 구독 인증기관·개인회원 무료
        기후변화 위기에 대응하기 위하여 대한민국은 2030년까지 신재생연료 혼합비율(Renewable Fuel Standard, RFS)을 3.5%에서 8%까지 상향하기로 결정하였다. 국내에서 제조되는 신재생연료의 원료가 되는 바이오매스의 60%이상이 해외에서 수입하는 실정이며, 2030 탄소중립 및 RE100과 같은 바이오연료 사용증가 정책의 확대로 인하여 국내에서 제조되어 활용가능한 바이오매스의 확보가 절실하게 필요하다. 곤충은 높은 비율의 단백질과 지질을 체내에 저장하는 특징을 가지고 있으며, 곤충의 대량사육을 통하여 지질의 대량생산이 가능할 것으로 판단된다. 본 연구에서는 곤충의 대량사육환경에서 제조되는 지질을 원료로 하여 기후변화에 대응할 수 있는 바이오연료로의 전환 제조가능성을 확인하고자 하였으며, 이를 위하여 촉매공정을 통하여 디젤과 혼합하여 사용할 수 있는 수첨바이오디젤을 제조하여 그 특성을 분석하였다. 그 결과 곤충지질을 활용하여 수첨바이오디 젤로 전환가능함을 확인하였다.
        23.
        2023.10 구독 인증기관·개인회원 무료
        An outbreak of stick insects, Ramulus mikado, as forest pests in South Korea has become a topic of concern. While other countries have reported these insects being severely affected by the entomopathogenic fungus Metarhizium spp., comprehensive research in South Korea remains limited on this topic. In our two-year investigation, we investigated the infection rate and mortality of R. mikado caused by Metarhizium anisopliae. In 2022, specimens were collected from Cheonggyesan, and in 2023 from Geumamsan. Although no infections were confirmed in the specimens collected in June of both years. Beginning in July, mortality and infection rates were greatly increased. In conclusion, the summer monsoon appears to create hot and humid conditions in the forest, contributing to reduced survival rates for these insects due to infection by M. anisopliae.
        24.
        2023.10 구독 인증기관·개인회원 무료
        대벌레(Ramulus mikado)는 1990년 이후부터 2000년대 초반까지 경북을 중심으로 대발생을 하였던 돌발 해충 으로 2020~2023년에 수도권에서 대발생 사례가 다수 보고 되었다. 대벌레의 대발생 원인으로 기후변화가 지목되 고 있지만, 대벌레 개체군과 생물적·비생물적 환경 조건과의 관계를 이해하기 위한 연구는 매우 부족한 실정이 다. 본 연구에서는 주요 기주식물과 대벌레 발생 양상에 대한 관계를 이해하고자 수행하였다. 2022년부터 2023년 까지 대벌레 대발생 지역 중 하나인 청계산 일대 등산로를 따라 조사구를 선정한 뒤 주요 기주식물이자 우점종인 신갈나무, 아까시나무, 잔털벚나무를 대상으로 대벌레의 발생 밀도를 조사하였다. 그 결과, 조사지점 간의 대벌 레 평균 밀도는 유의한 차이가 발견되지 않았지만, 기주식물에 따른 밀도의 차이는 뚜렷하게 나타났다.
        27.
        2023.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigated unrecorded freshwater bacterial species in Korea. Water and sediment samples were collected from the Nakdong River basin from 2020-2022. Bacterial isolates obtained through the conventional culture method with commercial media were subjected to 16S rRNA gene sequencing to identify unrecorded bacterial species. Results of 16S rRNA gene sequencing of the bacterial isolates revealed that a total of 44 bacterial isolates shared 16S rRNA gene sequence similarities of more than 98.65%, with validly published bacterial species not reported in Korea yet. These isolates were phylogenetically assigned to 4 phyla, 7 classes, 21 orders, 33 families, and 42 genera. A total of 2, 6, 12, and 24 species belonged to phyla Bacillota, Bacteroidota, Actinomycetota, and Pseudomonadota, respectively. Here, we provide details of these 44 unrecorded bacterial species, including Gram staining, colony and cellular morphologies, biochemical properties, and phylogenetic position.
        5,100원
        28.
        2023.07 구독 인증기관·개인회원 무료
        Emotion AI, a subset of AI that measures, understands, responds to, and elicits human emotions, is an emerging area that has great potential for advertising research and practice. Studies on the applicability of emotion AI in advertising and marketing have been growing in academic journals. This rapidly burgeoning scholarship creates a need for advertising scholars to comprehend the current status of the research on emotion AI in advertising as well as opportunities and challenges that this new technological development will bring to. Thus, this study aims to offer an overview of research on emotion AI in advertising to identify the scope of existing research, gaps in knowledge, and opportunities and challenges that lie ahead.
        29.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Governments around the world are enacting laws mandating explainable traceability when using AI(Artificial Intelligence) to solve real-world problems. HAI(Human-Centric Artificial Intelligence) is an approach that induces human decision-making through Human-AI collaboration. This research presents a case study that implements the Human-AI collaboration to achieve explainable traceability in governmental data analysis. The Human-AI collaboration explored in this study performs AI inferences for generating labels, followed by AI interpretation to make results more explainable and traceable. The study utilized an example dataset from the Ministry of Oceans and Fisheries to reproduce the Human-AI collaboration process used in actual policy-making, in which the Ministry of Science and ICT utilized R&D PIE(R&D Platform for Investment and Evaluation) to build a government investment portfolio.
        4,000원
        32.
        2023.05 구독 인증기관·개인회원 무료
        Laser cutting technology capable of remote cutting is being developed to reduce radiation exposure to workers and minimize secondary waste generation when dismantling highly polluted nuclear power plant facilities (reactors, pressurizers, steam generators, coolant pumps, etc.). Laser cutting proceeds in air or water, and at this time, secondary products containing radioactive materials are inevitably generated. In air cutting, dust and aerosol are generated, and in underwater cutting, aerosol, water vapor, dispersed particles (colloid, suspension), sediment (dross, sediment), and radioactive waste liquid are generated. Dispersed particles float in the form of fine particles in water, increasing the turbidity of water as cutting progresses, hindering work, and aerosols contain micrometer-sized particles together with water vapor, which can threaten the safety of workers. Particles dispersed in water and aerosol are within 10% of the mass ratio among secondary products, but the volume they occupy is very large, which can have a significant impact on the environment as well as a burden on treatment capacity. Various characterization methods are being developed to diagnose the generation mechanism and physical and chemical properties of laser cutting secondary products in real time and to secure technologies for collecting and removing dispersed particles and aerosols in water. This study introduces a real-time laser cutting secondary product characteristic evaluation method that can identify the key mechanisms of secondary product generation by analyzing the plasma formation process on laser cutting surface and behavior of aerosol, underwater dispersed particles produced by secondary products, as well as physical and chemical properties in real time with various measurement technologies such as Optical Emission Spectrometer (OES), Particle Size Analyzer (PSA), Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), Energy-dispersive X-ray spectroscopy (EDX), Transmission electron microscopy (TEM) and Inductively Coupled Plasma Time-of-Flight Mass Spectrometry (ICP-TOF-MS).
        33.
        2023.05 구독 인증기관·개인회원 무료
        Korea currently has two permanent shutdown Nuclear Power Plants (NPPs), and the decommissioning project is expected to begin soon, starting with the first commercial NPP. The decommissioning project will eventually be the disposal of radioactive waste in the final stage of the work, and in that respect, proper tracking and history management should be well established in the management of waste. This is in line with the guidelines that regulatory agencies should also properly manage radioactive waste. Therefore, this study intends to examine the factors that should be considered in terms of tracking and management of radioactive waste in decommissioning nuclear facilities. The starting and final point of tracking radioactive waste generated during decommissioning is the physical inventory of the current as-is state and the final container. In this respect, the tracking of waste starts from the beginning of the dismantling operation. Thus, at the stage of approval of the decommissioning work, it may begin with an ID scheme, such as the functional location in operation for the target System, Structure, and Components (SSCs). As the dismantling work progresses, SSCs will be classified by nature and radiological level, which will be placed in containers in small packaging units. At this time, the small package should be given an ID. After that, the dismantling work leads to the treatment of waste, which involves a series of operations such as cutting, decomposition, melting, and decontamination. Each step in which these tasks are performed will be placed in a container, and ID assignment is also required. Until now, the small packaging container is for transfer after each treatment, and it is placed in the storage container in the final stage, at which time the storage container also gives a unique ID. Considerations for follow-up management were reviewed assuming solid waste, which is the majority of dismantled radioactive waste considered in this study. The ID system should be prepared from the start of the dismantling work, ID generation of the small transporting container and ID generation of the final disposal container during the intermediate waste treatment process, and each ID generation of the previous stage should be linked to each generation stage. In addition, each ID must be generated, and the definition of the grant scheme and attributes is required.
        34.
        2023.05 구독 인증기관·개인회원 무료
        For the deep geological repository, engineering barrier system (EBS) is installed to restrict a release of radionuclide, groundwater infiltration, and unintentional human intrusion. Bentonite, mainly used as buffer and backfill materials, is composed of smectite and accessory minerals (e.g. salts, silica). During the post-closure phase, accessory minerals of bentonite may be redistributed through dissolution and precipitation due to thermal-hydraulic gradient formed by decay heat of spent nuclear fuel and groundwater inflow. It should be considered important since this cause canister corrosion and bentonite cementation, which consequently affect a performance of EBS. Accordingly, in this study, we first reviewed the analyses for the phenomenon carried out as part of construction permit and/or operating license applications in Sweden and Finland, and then summarized the prerequisite necessary to apply to the domestic disposal facility in the future. In previous studies in Sweden (SKB) and Finland (POSIVA), the accessory mineral alteration for the post-closure period was evaluated using TOUGHREACT, a kind of thermal-hydro-geochemical code. As a result of both analyses, it was found that anhydrite and calcite were precipitated at the canister surface, but the amount of calcite precipitate was insignificant. In addition, it was observed that precipitate of silica was negligible in POSIVA and there was a change in bentonite porosity due to precipitation of salts in SKB. Under the deep disposal conditions, the alteration of accessory minerals may have a meaningful influence on performance of the canister and buffer. However, for the backfill and closure, this is expected to be insignificant in that the thermal-hydraulic gradient inducing the alteration is low. As a result, for the performance assessment of domestic disposal facility, it is confirmed that a study on the alteration of accessory minerals in buffer bentonite is first required. However, in the study, the following data should reflect the domestic-specific characteristics: (a) detailed geometry of canister and buffer, (b) thermal and physical properties of canister, bentonite and host-rock in the disposal site, (c) geochemical parameters of bentonite, (d) initial composition of minerals and porewater in bentonite, (e) groundwater composition, and (f) decay heat of spent nuclear fuel in canister. It is presumed that insights from case studies for the accessory mineral alteration could be directly applied to the design and performance assessment of EBS, provided that input data specific to the domestic disposal facility is prepared for the assessment required.
        35.
        2023.05 구독 인증기관·개인회원 무료
        A variety of microorganisms are contained in the groundwater and surrounding environment at the depth of a deep geological repository, and could adversely affect the integrity and/or safety of the facility under certain thermal, hydraulic and chemical conditions. In particular, microbial activity (in the buffer and backfill) around the canister can cause corrosion of the canister through sulfide production by sulfate-reducing bacteria (SRB), and subsequently promote radionuclide release through the corroded part. Namely, this phenomenon is important in a perspective of performance assessment since it will have an impact on the post-closure exposure dose in the biosphere by accelerating radionuclide leakage into the near-field due to deterioration of the canister integrity In Finland, the performance assessment on microbial activity in buffer, backfill, and plug was performed for the licensing. However, in Korea, researches relevant to microbial activity are only in the early stage as of now. Accordingly, in this study, we draw initial considerations for the performance assessment on the phenomenon in the domestic facility based on review results for the methodology carried out as part of operating license application (i.e. SC-OLA). Studies on the performance assessment of microbial activity in Finland were mainly performed: (a) to investigate complex interactions among microorganisms in the repository by analyzing both indigenous and exogenous microorganisms through drilling, geological and geochemical analysis, (b) to identify microbial interactions at the buffer, backfill, and host rock interface for specific microorganisms that may affect activity of other microorganisms and integrity of the repository, (c) to analyze canister corrosion caused by microbial activity, particularly sulfide production by SRB, and (d) to characterize microbial illitization of montmorillonite that could affect permeability, hydraulic conductivity, and structural integrity of the repository. From reviewing studies above, it is judged that studies labelled as (b) through (d) are applicable to the performance assessment of microbial activity for the domestic facility regardless of specific conditions in Korea. However, for study labelled as (a), the following data on reflecting domestic conditions should be additionally obtained: (1) radionuclide inventory and temperature in spent nuclear fuel, (2) swelling pressure and organic carbon content of bentonite, and (3) size, shape, and gas composition of pores in bentonite. Results of this study could be directly applied to the design and performance assessment for buffer and backfill components, provided that input data specific to the domestic disposal facility is prepared for the assessment required.
        36.
        2023.05 구독 인증기관·개인회원 무료
        Bentonite, a material mainly used in buffer and backfill of the engineering barrier system (EBS) that makes up the deep geological repository, is a porous material, thus porewater could be contained in it. The porewater components will be changed through ‘water exchange’ with groundwater as time passes after emplacement of subsystems containing bentonite in the repository. ‘Water exchange’ is a phenomenon in which porewater and groundwater components are exchanged in the process of groundwater inflow into bentonite, which affects swelling property and radionuclide sorption of bentonite. Therefore, it is necessary to assess conformity with the performance target and safety function for bentonite. Accordingly, we reviewed how to handle the ‘water exchange’ phenomenon in the performance assessment conducted as part of the operating license application for the deep geological repository in Finland, and suggested studies and/or data required for the performance assessment of the domestic disposal facility on the basis of the results. In the previous assessment in Finland, after dividing the disposal site into a number of areas, reference and bounding groundwaters were defined considering various parameters by depth and climate change (i.e. phase). Subsequently, after defining reference and bounding porewaters in consideration of water exchange with porewater for each groundwater type, the swelling and radionuclides sorption of bentonite were assessed through analyzing components of the reference porewater. From the Finnish case, it is confirmed that the following are important from the perspective of water exchange: (a) definition of reference porewater, and (b) variations in cation concentration and cation exchange capacity (CEC) in porewater. For applying items above to the domestic disposal facility, the site-specific parameters should be reflected for the following: structure of the bedrock, groundwater composition, and initial components of bentonite selected. In addition, studies on the following should be required for identifying properties of the domestic disposal site: (1) variations in groundwater composition by subsurface depth, (2) variations in groundwater properties by time frame, and (3) investigation on the bedrock structure, and (4) survey on initial composition of porewater in selected bentonite The results of this study are presumed to be directly applied to the design and performance assessment for buffer and backfill materials, which are important components that make up the domestic disposal facility, given the site-specific data.
        37.
        2023.05 구독 인증기관·개인회원 무료
        In buffer, a main component of engineering barrier system (EBS) in the deep geological repository, mass loss is mainly caused by upheave and mechanical erosion. The former is a phenomenon that bentonite in the upper part of the buffer moves to the backfill region due to groundwater intake and swelling. And, the latter is a phenomenon that bentonite on the surface of the buffer moves to the backfill region due to groundwater flow at the interface with host rock as the buffer saturates. Buffer mass loss adversely affects the fulfilment of the safety function of the buffer that is to limit and retard radionuclide release in the event of canister failure. Accordingly, in this paper, we reviewed how to consider this phenomenon in the performance assessment for the operating license application in Finland, and tentatively summarized data required to conduct the analysis for the domestic facility based on the review results. Regarding buffer mass loss, the previous studies carried out in Finland are categorized as follows: 1) experiment on the amount of buffer upheave with groundwater inflow rate (before backfilling), 2) analysis for the amount of buffer upheave with groundwater inflow rate (after backfilling), 3) analysis of buffer erosion rate with groundwater inflow rate, 4) analysis for distribution of the groundwater inflow rate into the buffer for all deposition holes (using ConnectFlow modeling results), and 5) analysis of buffer mass loss with groundwater salinity. Finally, the buffer mass loss distribution table was derived from the results of 1) through 3) by combining with that of 4). Given these studies, the following will be required for the performance assessment for buffer mass loss in the domestic disposal facility: a) distribution table of buffer mass loss for combined interactions taking into account effect of 5) (i.e. 1), 2), 3), and 5) + 4)), and b) Threshold for buffer mass loss starting to negatively affect the fulfilment of the safety function of the buffer. Even though it is judged that the results of this study could be directly applied to developing the design concept of EBS and to conducting the performance assessment in the domestic disposal facility, it is essential to prepare a set of input data reflecting the site-specific design features (e.g. dimension, material used, site, etc.), which include saturation time and groundwater salinity.
        38.
        2023.05 구독 인증기관·개인회원 무료
        In the deep geological repository, a considerable quantity of cementitious materials is generally used for structural stability of subcomponents such as grout and concrete plug of disposition tunnel. Strong alkaline leachates (pH>13) are produced after cement is dissolved by groundwater inflow from bedrock. When the leachates are transported to bentonite porewater (e.g. buffer and backfill) and thereby water exchange occurs, the physical properties of bentonite such as swelling capacity and hydraulic conductivity are changed, which eventually affects the safety function and long-term stability of engineered barrier system (EBS). Thus, in this paper, we reviewed the performance assessment methodology for cement-bentonite interaction in the operating license application for the Finnish deep geological repository, and suggested what to prepare for the analysis on the domestic disposal facility. In Finland, thermal-hydraulic-chemical analysis for dissolution of montmorillonite by alkaline leachates resulting from cement degradation during the saturation of bentonite was carried out using PRECIP code. From this analysis, it was confirmed that effect on pH was considered to be more significant than that on temperature and bentonite saturation. As a result of this analysis, it was predicted that all primary minerals (including montmorillonite, quartz, and calcite) were dissolved and some secondary minerals (e.g. chalcedony and celadonite) was precipitated by alkaline cement leachates transported to the bentonite. In addition, it was shown that silica was preferentially released while the montmorillonite was dissolved, thus cementation of the bentonite was occurred. Through this phenomenon, the swelling capacity of bentonite is reduced and the hydraulic conductivity of bentonite is increased, which have a significant impact on the performance of the buffer and backfill. Considering this, study on spreading of alkaline leachates, which is a condition for dissolution of montmorillonite, is necessary for the performance assessment of the domestic deep geological repository. However, this requires the site-specific data for the following in the disposal site: (a) distribution in fractured bedrock and pore structure (e.g. porosity, pore size distribution and pore morphology) in the bedrock, (b) hydraulic gradient and salinity concentration of groundwater, and (c) flux and velocity of groundwater. Results of this study is considered to be directly utilized to the conceptual design and performance assessment of the deep geological repository in Korea, provided that additional data on microbiological properties of groundwater are obtained for the site selected.
        1 2 3 4 5