검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 37

        21.
        2023.05 구독 인증기관·개인회원 무료
        Radioactive waste generated in various forms needs to be technically stabilized for safe treatment, disposal, and long-term safety. Overseas, research on vitrification with excellent mechanical and physicochemical properties of high-level waste is being actively conducted. Vitrification is a process of converting radioactive waste into a stable and durable glass-like material, which is then safe storage and disposal. The stability of vitrified form is an important concern for environment safety, as any leakage or release of radionuclide could have serious consequences for health and the environment. Therefore, several studies are being conducted on the disposal stability of vitrification of radioactive waste. In order to evaluate the stability of the solidified form, mechanical properties such as density, microhardness, and compressive strength and chemical durability such as leaching properties should be performed. There are several types of leaching test methods to evaluate the chemical durability, which is important in the characterization of solidified forms. In this study, the leaching test method for chemical durability evaluation and the evaluation results of leaching characteristics according to pH were reviewed.
        22.
        2023.05 구독 인증기관·개인회원 무료
        The large rectangular and cylindrical concrete drums are stored in nuclear power plant (NPP) for a long time. At the early stage of NPP operation, the treatment technology of boron concentrates and spent resin was not well developed, when compared to current system. Since the waste acceptance criteria (WAC) of the disposal facility was not established, the boron concentrates and spent resins were packaged in 200 L drum. Some of the 200 L drums, which contain relatively high dose rate radioactive waste, were stored in large concrete drum. The concrete drum offers superior shielding effect and allows reduction of radiation exposure to workers. The WAC requires various characteristics: radiological characteristics, physical characteristics, chemical characteristics, etc. The non-destructive method allows the rapid evaluation and estimation of the concrete structure. Also, it is expected that the large concrete exhibits integrity after the measurements. In this paper, the non-destructive method to understand the large rectangular and cylindrical drum is systematically studied. The advantage and disadvantage of the non-destructive methods were compared in this paper. In addition, the optimized methodology to characterize the radioactive waste containing large rectangular and cylindrical drum will be discussed in this paper.
        23.
        2023.05 구독 인증기관·개인회원 무료
        During the operation of the nuclear power plant, various radioactive waste are generated. The spent resin, boron concentrates, and DAW are classified as a generic radioactive waste. They are treated and stored at radioactive waste building. In the reactor vessel, different types of radioactive waste are generated. Since the materials used in reactor core region exposed to high concentration of neutrons, they exhibit higher level of surface dose rate and specific activity. And they are usually stored in spent fuel pool with spent fuel. Various non-fuel radioactive wastes are stored in spent fuel pool, which are skeleton, control rod assembly, burnable neutron absorber, neutron source, in core detector, etc. The skeleton is composed of stainless 304 and Inconel-718. There are two types of control rod assembly, that are WH type and OPR type. The WH type control rod is composed of Ag-In-Cd composites. The OPR type control rod is composed of B4C and Inconel-625. In this paper, the characteristics and storage status of the non-fuel radioactive waste will be reported. Also, the management strategy for the various non-fuel radioactive waste will be discussed.
        24.
        2023.05 구독 인증기관·개인회원 무료
        The segmentation of activated components is considered as a one of the most important processes in decommissioning. The activated components, such as reactor vessel and reactor vessel internals, are exposed to neutron from the nuclear fuel and classified to intermediate, low, and very low-level wastes. As it is expected, the components, which are closed to nuclear fuel, exhibit higher degree of specific activity. After the materials were exposed to neutrons, their original elements transform to other nuclides. The primary nuclides in activated stainless steel are 55Fe, 63,59Ni, 60Co, 54Mn, etc. The previous study indicates that the specific activity of individual nuclide is strongly depends on the material compositions and impurities of the original materials. The 59Co is the one of the most important impurities in stainless steel and carbon steel. In this paper, the relationship between individual nuclides in activation analysis of activated components was studied. The systematic study on specific activity of primary nuclides will be discussed in this paper to understand the activation tendency of the components.
        25.
        2023.05 구독 인증기관·개인회원 무료
        Dry active waste (DAW) contains substantial amount of cellulose related materials. The DAW are usually classified as low and/or very low-level waste. In Korea, three types of disposal facilities have been considered: silo, engineering barrier, and land-fill. Currently, only the silo type disposal facility is in operation. Around 27 thousand drums were disposed in silo. Massive amount of cement concrete is used in construction of silo. The ground waste, which flow through the concrete structure, shows higher pH than as it is. It is generally known that the pH of silo is ~12.47 in Korea, when considering construction material, filling material, and property of ground water. It is expected that the cellulose in DAW will be partially transformed to isosaccharinic acid (ISA). It is generally accepted that the ISA plays a negative role in safety analysis of disposal facility by stimulation of specific nuclides. Various factors affect the degradation of cellulose containing radioactive waste, such as degree of polymerization, pH of disposal condition, interaction between concrete structure and ground water, etc. In this paper, the disposal safety analysis of cellulose containing radioactive, usually paper, cotton, wood, etc., are studied. The degradation of cellulose with respect to degree of polymerization, pH of neighboring water, filling material of silo, etc. are reviewed. Based on the review results, it is reasonable to conclude that the substantial amount of DAW could be disposed in silo.
        26.
        2023.05 구독 인증기관·개인회원 무료
        KHNP’s vitrification technology introduced a commercialized vitrification facility to the Hanul nuclear power site after a commercialization test through a lab test and a pilot plant at KHNP-CRI. France’s ANADEC (consortium with CEA, Orano, ECM Technologies and Andra) conducted a feasibility evaluation from FY2018 to FY2021 to apply In-Can vitrification, which was developed to treat Fukushima Effluent Treatment Waste (FETW) such as carbonate slurry and ferric slurry generated from ALPS (Advanced Liquid Processing System-Multi Radionuclides Removal) facilities for waste treatment in Fukushima, Japan. For commercialization, the following method was used. First, through the Laboratory scale studies, the possibility of high waste loading (60wt% in dry mass) of slurry on borosilicate matrix was tested. In addition, the volatility of radionuclide was evaluated through radionuclides surrogates with a Bench-scale mockup and glass discharge (100 kg) was evaluated through In-Can vitrification process verification. The feeding system was improved through a pilot scale test, and finally, glass discharge (300 kg) was evaluated after large amount of waste was treated through an industrial prototype (Fullscale) at the CEA Marcoule site (France).
        27.
        2023.05 구독 인증기관·개인회원 무료
        Spent filters contained in drums of radioactive waste generated from nuclear power plants are contaminated with various radioactive isotopes due to their use in various water purification processes in the system. Radiation doses from the spent filters can vary from low to high levels. To dispose of drums containing spent filters as radioactive waste, the inventory of radioactive isotopes in the filters must be determined. Two methods for determining the inventory are indirect measurement using scaling factors and direct analysis of filter samples. This study suggests a method to determine the appropriate sample size for each drum based on the number of filters stored in the drum, when direct analysis is used to determine the inventory of radioactive isotopes. In particular, Visual Sample Plan (PNNL) software’s Item Sampling function was used to calculate the sample size, considering the confidence level and minimum acceptable coverage rate. As a result, assuming that the number of filters packed per drum ranges from a minimum of 1 to a maximum of 30, the study suggests that a full inspection is required for drums containing 9 or fewer filters, while drums containing 10 filters should be sampled with 9 samples, 11 filters with 10 samples, 12-13 filters with 11 samples, 14-16 filters with 12 samples, 19-22 filters with 14 samples, 23-26 filters with 15 samples, and 27-30 filters with 16 samples.
        28.
        2023.05 구독 인증기관·개인회원 무료
        In order to permanently dispose of radioactive waste drums generated from nuclear power plants, disposal suitability must be demonstrated and the nuclides and radioactivity contained in the waste drums, including those in the shielding drums, must be identified. At present, reliable measurements of the nuclide concentration are performed using drum nuclide analysis devices at power plants and disposal facilities during acceptance inspection. The essential functions required to perform nuclide analysis using the non-destructive assay system are the correction for self-attenuation and the dead time correction. Until now, measurements have mainly been performed for drums containing solid waste such as DAW drums using SGS calibration drums with ordinary iron drums. However, for drums containing non-uniform radioactive waste, such as waste filters embedded in cement within shielding drums, a separate calibration drum needs to be produced. In order to produce calibration drums for shielded and embedded waste drums, the design considered the placement of calibration sources, setting of shielding thickness, correction for medium density, and cement mixing ratio. Based on these considerations, three calibration drums were produced. First, a shielding drum with an empty interior was produced. Second, a density correction drum filled with cement was produced to create apparent density on the surface of the shielding drum. Third, a physical model drum was produced containing a mock waste filter and cement filled in the shielding drum.
        29.
        2023.05 구독 인증기관·개인회원 무료
        Commercial operation of KORI Unit 1 ended in 2017, and the final decommissioning plan is currently under approval from the KINS. In order for the dismantling waste to go to the repository, it is judged that the radioactive waste generated during the commercial operation should be treated and disposed in advance. Among these radioactive wastes, spent filters contain various radionuclides. The radiation dose rate from the radiation coming out of the filters ranges from a low dose rate to high dose rate. Therefore, in order to handle the spent filters, a remote processing system is required to reduce the radiation exposure of workers. This paper evaluates the radioactive inventory of filters that are stored in the filter room at the KORI unit #1. For this purpose, a method for predicting the radioactivity of each nuclide in the filter, based on the radiation dose rate, has been described using the MicroShield code, which is a commercial shielding code. The information on the filters in the field has only the creation date, type, size, and surface dose rate. In order to evaluate the radioactivity inventory using such limited data, it is possible to know the nuclide radioactivity ratio in the filter. We took out some of the filters stored on site and measured from using the ISCOS system, a gamma nuclide analyzer. The radioactivity of each nuclide in the filter was inferred by modeling with the MicroShield code, based on the radiation dose rate and the radioactivity value of each nuclide measured in the field.
        30.
        2023.05 구독 인증기관·개인회원 무료
        In the Kori-1 radioactive waste storage, the concentrated waste and spent resin drums generated in the past are repacked and stored in large concrete drums. In order to dispose of radioactive waste generated before the establishment of the waste acceptance criteria, it is necessary to develop a large concrete drum treatment and waste treatment process to evaluate disposal suitability and secure technology that meets the latest technical standards. In addition, for worker safety and waste reduction, it is important to develop secondary waste treatment technology generated during waste treatment. In this study, the types and characteristics of secondary wastes that can be generated when large concrete drums are decommissioned were investigated. In addition, considering the characteristics of possible secondary wastes, suitable treatment methods and characteristic evaluations were analyzed. We plan to develop an optimal process for secondary waste treatment in consideration of on-site work space, economic feasibility, and safety.
        31.
        2023.05 구독 인증기관·개인회원 무료
        The acceptance criteria for low and intermediate level radioactive waste disposal facilities in Korea to regulate that homogeneous waste, such as concentrated waste and spent resin, should be solidified. In addition, solidification requirements such as compressive strength and leaching test must be satisfied for the solidified radioactive waste solidified sample. It is necessary to develop technologies such as the development of a solidification process for radioactive waste to be solidified and the characteristics of a solidification support. Radioactive waste solidification methods include cement solidification, geopolymer solidification, and vitrification. In general, low-temperature solidification methods such as cement solidification and geopolymer solidification have the advantage of being inexpensive and having simple process equipment. As a high-temperature solidification method, there is typically a vitrification. Glass solidification is generally widely used as a stabilization method for liquid high-level waste, and when applied to low- and intermediate-level radioactive waste, the volume reduction effect due to melting of combustible waste can be obtained. In this study, the advantages and disadvantages of the solidification process technology for radioactive waste and the criteria for accepting the solidified material from domestic and foreign disposal facilities were analyzed.
        32.
        2023.05 구독 인증기관·개인회원 무료
        A vitrification facility control area is formed to control and monitor the vitrification facility process, and the control system is designed to manage the vitrification facility more safely and effectively. The control system is largely composed of a process control system and an off-gas monitoring system. The process control system is operated so that operation variables can be maintained in a normal state even in normal and transient conditions, and is designed so that the vitrification facility can be stably maintained in the event of an abnormality in the facility. The process control system consists of Programmable Logic Controller (PLC) and Local Control Panel (LCP), which controls and monitors each unit device. In addition, operation variables are provided to the operator so that the operator can manage operation variables during process control in a centralized manner for the operation of the vitrification facility. The off-gas monitoring system is operated to monitor whether the off-gas discharged to the environment is stably maintained within the standard level, and the off-gas is monitored through an independent monitoring system.
        33.
        2023.05 구독 인증기관·개인회원 무료
        After melting glass at a high temperature of about 1,100 degrees in the Cold Crucible Induction Melter (CCIM) of the vitrification facility, radioactive waste is fed into the CCIM to vitrify radioactive waste. Accordingly, since the metal sector of the CCIM contacts the high-temperature molten glass, cooling water is supplied to continuously cool the metal sector. The cooling system is divided into primary and secondary cooling water systems. The primary cooling water flows inside the metal sector of the CCIM to maintain the metal sector within normal temperature, thereby forming a glass layer between the metal sector and the high-temperature melting glass. The secondary cooling system is a system that cools the primary cooling water that cools the metal sector, and removes heat generated from the primary cooling system. In addition, it is designed to stably supply cooling water to the secondary cooling water system through an emergency cooling water system so that cooling water can be stably supplied to the secondary cooling water system in the event of secondary cooling water loss. Therefore, it is designed to maintain the facility stably in the event of loss of cooling water for the CCIM of the vitrification facility.
        1 2