검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1,007

        21.
        2024.04 구독 인증기관·개인회원 무료
        Due to climate change and the rise in international transportation, there is an emerging potential for outbreaks of mosquito-borne diseases such as malaria, dengue, and chikungunya. Consequently, the rapid detection of vector mosquito species, including those in the Aedes, Anopheles, and Culex genera, is crucial for effective vector control. Currently, mosquito population monitoring is manually conducted by experts, consuming significant time and labor, especially during peak seasons where it can take at least seven days. To address this challenge, we introduce an automated mosquito monitoring system designed for wild environments. Our method is threefold: It includes an imaging trap device for the automatic collection of mosquito data, the training of deep-learning models for mosquito identification, and an integrated management system to oversee multiple trap devices situated in various locations. Using the well-known Faster-RCNN detector with a ResNet50 backbone, we’ve achieved mAP (@IoU=0.50) of up to 81.63% in detecting Aedes albopictus, Anopheles spp., and Culex pipiens. As we continue our research, our goal is to gather more data from diverse regions. This not only aims to improve our model’s ability to detect different species but also to enhance environmental monitoring capabilities by incorporating gas sensors.
        22.
        2023.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Thermodynamic sorption modeling can enhance confidence in assessing and demonstrating the radionuclide sorption phenomena onto various mineral adsorbents. In this work, Ca-montmorillonite was successfully purified from Bentonil-WRK bentonite by performing the sequential physical and chemical treatments, and its geochemical properties were characterized using X-ray diffraction, Brunauer-Emmett-Teller analysis, cesium-saturation method, and controlled continuous acidbase titration. Further, batch experiments were conducted to evaluate the adsorption properties of Cs(I) and Sr(II) onto the homoionic Ca-montmorillonite under ambient conditions, and the diffuse double layer model-based inverse analysis of sorption data was performed to establish the relevant surface reaction models and obtain corresponding thermodynamic constants. Two types of surface reactions were identified as responsible for the sorption of Cs(I) and Sr(II) onto Ca-montmorillonite: cation exchange at interlayer site and complexation with edge silanol functionality. The thermodynamic sorption modeling provides acceptable representations of the experimental data, and the species distributions calculated using the resulting reaction constants accounts for the predominance of cation exchange mechanism of Cs(I) and Sr(II) under the ambient aqueous conditions. The surface complexation of cationic fission products with silanol group slightly facilitates their sorption at pH > 8.
        4,300원
        23.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        농촌진흥청 국립원예특작과학원에서는 2021년 분홍색계 소 형 호접란 ‘Arihong’을 육성하였다. 2014년 밝은 분홍색 소형 품종 Phalaenopsis ‘Wedding’와 백색 바탕에 분홍빛을 가지는 소형종 P. ‘[{KT1398-1×(KM-6)-4}×Chiangbeauty-88]-23’ 를 모본과 부본으로 교배하였다. 2018년 실생 120개체 중 잎자세, 화색, 화형, 꽃대수 등 특성이 우수한 ‘14104-1’ 개체를 선발하여 기내 화경배양을 통해 증식하였다. 2018년부터 2021년에까지 1차, 2차특성검정을 통해 품종의 안정성과 균일성을 확인한 후 ‘Arihong’로 명명하였다. 이 품종은 백색(WG155B) 바탕에 중앙 에는 보라빛 분홍색(PVG80B)을 띄며, 진한 자주색(PG78A) 순판 을 가지는 것이 특징이다. 꽃대가 2대씩 발생하고 꽃대 길이는 평균 42.1cm 소형 분화로 적절한 크기를 가지고 있다. 평피기 형태의 꽃은 길이와 폭이 각각 5.1, 5.7cm이며, 분지가 발생하여 1개의 꽃대에 13.0개의 소화가 착생한다. ‘Arihong’의 잎은 수평으로 자라며 길이와 폭이 각각 13.0cm, 4.9cm였다. 또한 초세가 우수하고 생육 속도가 빨라 엽수 확보가 용이한 특성을 보였다.
        4,000원
        24.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        경상남도농업기술원 화훼연구소에서 2021년 화색이 연황 색이며 화심이 녹색인 미니 절화용 거베라 품종 ‘크림쿠키’ (Cream Cookie)를 육성하였다. ‘크림쿠키’ 품종은 2014년 황색 미니 ‘Sun City’를 모본으로, 백색 미니 ‘Blandy’를 부 본으로 인공교배를 실시하여 육성된 품종이다. 2021년까지 생육 및 개화 특성검정과 기호도 조사를 실시하였으며 ‘크림 쿠키’의 생육 및 개화특성을 대조품종인 ‘Sun City’와 비교하 였다. ‘크림쿠키’는 연황색(RHS 4C) 꽃잎과 녹색 화심을 가진 반겹꽃 거베라 품종이다. 화폭이 7.1cm인 작은 꽃이며, 화경 장은 58.9cm였다. 화경 직경은 상부 0.4cm, 하부 0.7cm 였 다. 외부설상화의 길이는 2.8cm이며 폭은 0.8cm였다. 개화 소요일수는 65.7일로 ‘Sun City’에 비하여 18.8일 빨랐으며, 첫 개화시 엽수는 22.4매였다. 연간 주당 절화수량은 102.3 본으로 ‘Sun City’의 82.0본에 비하여 20.3본이 많았다. 절 화수명은 17.8일로 ‘Sun City’보다 4.1일 더 길었다. ‘크림쿠 키’는 화폭이 7.1cm의 미니 품종으로 연간 주당 100본 이상 절화 생산이 가능하다. 또한 수확 후 꽃 캡 씌우기, 꽃목 보강 등 추가적인 작업을 생략할 수 있어 생산비 절감이 가능하므 로 농가보급 확대가 기대된다.
        4,000원
        25.
        2023.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This paper investigates L2 motivation and demotivation of college English majors in a Korean junior college. The participants’ L2 (de)motivation was explored by the oughtto L2 self, an element of the L2 motivational self system. Data were collected from two rounds of interviews with 59 and 31 students in all four years and analyzed qualitatively. The sources of the ought-to L2 self varied; however, it was a matter of how the participants recognized others’ expectations and pressure (i.e., manageable or beyond control). It was also relevant to how they comprehended and internalized these external influences for their L2 learning and (de)motivation. The findings indicate that the oughtto L2 self could be a contributing factor in sustaining L2 motivation and exerting effort. Finally, this paper calls for more needs to ensure and promote personalized and meaningful L2 learning for college English major students.
        6,300원
        26.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Salivary gland dysfunction is a common complication of diabetes. Decreased saliva production and changes in saliva composition may cause oral diseases. Reactive oxygen species (ROS) generation in the salivary glands results in the loss of acinar cells and decreased saliva secretion. Glucagon-like peptide 1 (GLP-1) is the incretin hormone that regulates blood glucose level and can suppress ROS production and inflammation through its antioxidant effects. Dipeptidyl peptidase-4 (DPP-4) is an enzyme that breaks down GLP-1. In this study, we evaluated the pathological role of DPP-4 and GLP-1 on salivary gland dysfunction in type 2 diabetic db/db mice. We observed reduced salivary secretion and histopathological alteration of salivary glands in the db/db mice. The increased DPP-4 and decreased GLP-1 levels in the salivary glands were also detected in the db/db mice. Furthermore, the db/db mice had increased apoptosis and oxidative injury in salivary glands. There was an accumulation of advanced glycation end products and mucus in the salivary glands of the db/db mice. In conclusion, these results showed the possible involvement of DPP-4 and GLP-1, leading to increased ROS-induced apoptosis in diabetes-related salivary gland dysfunction. DPP-4 and GLP-1 may be a pharmacological target for patients with diabetes-related salivary gland dysfunction.
        4,300원
        29.
        2023.11 구독 인증기관·개인회원 무료
        If radioactive plumes are released outside due to loss of containment building integrity during a nuclear power plant accident, these materials might travel with the wind, affecting both the surrounding environment and neighboring countries. In China, most nuclear power plants are located on the eastern coast. Consequently, a radioactive plume generated during an accident could negatively impact even the western part of the Korean Peninsula due to westerly winds. To detect such problems early, respond quickly, and protect residents, a system that can monitor aerial radiation under normal conditions is needed. Additionally, a detection system that can operate in real-time in an emergencies conditions is required. The current method for aerial radiation measurement takes environmental radiation data from a monitoring post 1.5 m above the ground and converts it to altitude. To measure actual aerial radiation, an expansive area is surveyed by aircraft. However, this approach is both time-consuming and expensive. Thus, to monitor radioactive plumes influenced by environmental factors like wind, we need a radiation detector that can gauge both radioactivity and directionality. In this study, we developed a radiation detector capable of assessing both the radioactivity and directionality of a radioactive plume and conducted its performance evaluation. We miniaturized the radiation detector using a CZT (Cadmium Zinc Telluride) sensor, enabling its mounting on unmanned aerial vehicles like drones. It is configured with multi-channels to measure directionality of a radioactive plumes. For performance evaluation, we positioned two-channel CZT sensors at 90 degrees and measured the energy spectrum for angle and distance using a disk-type radioactive isotope. Using this method, we compared and analyzed the directionality performance of the multi-channel radiation detector. We also confirmed its capability to discern specific radioactivity information and nuclide types in actual radioactive plumes. Our future research direction involves mounting the multi-channel radiation detector on a drone. We aim to gather actual aerial radiation data from sensors positioned in various directions.
        30.
        2023.11 구독 인증기관·개인회원 무료
        Ion exchange resins are commonly employed in the treatment of liquid radioactive waste generated in nuclear power plants (NPP). The ion exchange resin used in NPP is a mixed-bed ion exchange resin known as IRN-150, which is of nuclear grade. This resin is a mixture of cation exchange resin and anion exchange resin. The cation exchange resin removes cationic radionuclides such as Cs and Co, while anion exchange resin handles anions (e.g., H14CO3 -), effectively purifying the liquid waste. Spent ion exchange resins (spent resin) containing C-14 are classified as low and intermediate level radioactive waste, and their radioactivity needs to be reduced as it exceeds the disposal limit regulated by law. Therefore, the microwave technology for the removal of C-14 from spent resin has been investigated. Previous studies have successfully developed a method for the effective removal of C-14 during the resin treatment process. However, it was observed that, in this process, functional groups in the resin were also removed, resulting in the generation of off-gases containing trimethylamine. These off-gases can dissolve in water from process, increasing its pH, which can subsequently hinder the recovery of C-14. In this study, we investigated the high-purity recovery of C-14 by adjusting the moisture content within the reactor following microwave treatment. Mock spent resins, consisting of 100 g of resin with HCO3 - ion-exchanged and 0, 25, or 50 g of deionized water, were subjected to microwave treatment for 40 or 60 minutes. Subsequently, the C-14 desorption efficiency of the mock spent resins was evaluated using an acid stripping process with H3PO4 solution. The functional group status of the mock spent resins was analyzed using 15N NMR spectroscopy. The results showed that the mock spent resins exhibited efficient C-14 recovery without significant functional group degradation. The highest C-14 desorption efficiency was achieved when 25 g of deionized water was used during microwave treatment.
        31.
        2023.11 구독 인증기관·개인회원 무료
        Deep disposal facility for High-Level radioactive Waste (HLW) uses a multi-barrier system to prevent the leakage of radionuclide. As a part of the engineered barrier, bentonite is primarily considered as the main buffering material. This is due to the adsorption and swelling properties of the bentonite, which are expected to effectively impede leakage of the radionuclide. In many cases, adsorption is generally regarded as occurring only within the buffer zone. However, several research has been conducted to explore the possibility of bentonite intrusion into the Excavation- Damaged Zone (EDZ) generated during excavation processes, because of the swelling properties of the bentonite. Generally, for host rock near the deep disposal facility such as granite, groundwater flows through the fracture network. Therefore, analysis of the characteristics of the fracture network is essential for predicting the behavior of radionuclide in groundwater. Accordingly, the bentonite intrusion into the fracture network is critical for safety assessment of the deep disposal facility. To analyze this, hydro-geochemical model was established utilizing COMSOL Multiphysics and PHREEQC, observing changes of the behavior of U (VI) along fracture network due to the swelling of bentonite. Modeling was conducted with progressively changing intrusion depth of the bentonite. According to the results, the behavior of U (VI) exhibited significant changes depending on the connectivity of the fractures. Based on the distribution characteristics of the fracture network, heterogeneous groundwater flow was observed. U (VI) was transported through the preferential pathway, which indicates high connectivity, due to the rapid groundwater flow. Notably, when changing the intrusion depth of bentonite, significant differences in behavior of U (VI) were observed in the 0-20 cm case. In contrast, as the intrusion depth increased, it was observed that differences became less evident. These results indicate that changes in the properties of fracture network in EDZ due to the swelling of bentonite significantly influence the behavior of U (VI).
        32.
        2023.11 구독 인증기관·개인회원 무료
        The Colloid Formation and Migration (CFM) international joint research initiative continues as a part of the GTS’s Radionuclide Retardation Programme, which has been in progress since 1984. This project focuses on examining the formation of colloids from a bentonite-engineered barrier system and exploring how these colloids impact the migration of radionuclides in fractured host rock when subjected to advective flow. Phase 1 of the project was launched in 2004 and concluded in early 2008, focusing on preliminary studies related to in-situ boundary conditions, predicting models, and supplementary lab works. Following that, Phase 2 spanned from 2008 to 2013 and aimed at fortifying the field setup by adding three new monitoring boreholes and suitable instrumentation in both the boreholes and tunnel. This phase also tested the system’s resilience while mapping the flow domain. Phase 3 kicked off in January 2014 and extended until December 2018. During this period, the Long-term In-situ Test (LIT) was introduced in May 2014, featuring a set of compacted bentonite rings laced with radionuclide tracers. These were placed in a borehole to serve as a colloid and radionuclide source. CFM Phase 4 initiative commenced in January 2019, marking the successful deployment of the i-BET (In-situ Bentonite Erosion Test). This project component involves placing approximately 50 kg of compacted bentonite in a natural water-conducting shear zone. Korea Atomic Energy Research Institute (KAERI) joined CFM in 2008 to examine the behavior of colloid generation and migration with radionuclides in the Underground Research Laboratory. The fourth phase of the CFM project was also scheduled to include a post-mortem evaluation of the LIT and additional tracer experiments in the well-mapped MI shear zone. This study aims to provide an interim update on the ongoing i-BET, a key component of Phase 4 of the CFM project. We will also discuss the current status of the post-mortem analysis for the LIT experiment. In addition, we will outline plans for the forthcoming Phase VI of the project. These plans will continue to advance our understanding of radionuclide migration and the influence of bentonite-based disposal systems.
        33.
        2023.11 구독 인증기관·개인회원 무료
        In the high-level waste disposal systems, colloids generated through the chemical erosion of bentonite buffers can serve as critical mediators for the transport of radionuclides from the disposal environment to the biosphere. The stability of these colloids is influenced by the chemical composition of the groundwater. According to DLVO theory, the Critical Coagulation Concentration (CCC) is the ionic strength at which the total repulsive force between colloids is either less than or equal to the total attractive force. At ionic strengths lower than the CCC, electrostatic double-layer repulsion outweighs van der Waals attraction, forming a repulsive barrier between particles. Conversely, at ionic strengths higher than the CCC, attractive forces dominate, leading to particle aggregation. To investigate the CCC of bentonite colloids, this study focused on Ca-type WRK bentonite. Colloids separated from a ten g/L bentonite suspension underwent centrifugation (1,200 g for 30 minutes) and dialysis (3,500 MWCO) to produce colloid samples. After adjusting the ionic strength from 0.1 mM to 10 mM, the particle size distribution was monitored as a function of aggregation time for approximately 20 days. Rate constants, calculated based on variations in ionic strength, were used to interpret the observed results. The experimental outcomes revealed that the CCC value for WRK bentonite colloids was an order of magnitude lower with CaCl2 than with NaCl. This suggests that Ca ions have a more significant impact on colloid stability, which has implications for the longterm safety of high-level waste disposal systems.
        34.
        2023.11 구독 인증기관·개인회원 무료
        Montmorillonite, a versatile clay mineral with a wide range of industrial applications, is often found in natural deposits with impurities that limit its effectiveness. This study investigates the use of column froth flotation as an innovative technique to improve the purity of montmorillonite by selectively removing impurities without affecting its essential properties. Column froth flotation, a well-established mineral separation method, is adapted to address the specific challenges associated with enhancing montmorillonite purity. The process involves conditioning raw montmorillonite with carefully chosen reagents to selectively separate impurities, including quartz, feldspar, and other minerals commonly found alongside montmorillonite in natural deposits. Experimental results confirm the effectiveness of column froth flotation in significantly enhancing the purity of montmorillonite. This method allows for efficient impurity removal while preserving the essential properties of montmorillonite, making it suitable for various industrial applications. The study also explores the optimal conditions and reagent choices to maximize the purification process. In conclusion, column froth flotation offers a promising avenue for enhancing montmorillonite purity without compromising its fundamental properties. This study provides valuable insights into optimizing the process for large-scale industrial applications, facilitating the development of highquality montmorillonite products tailored to specific industrial needs.
        35.
        2023.11 구독 인증기관·개인회원 무료
        The final disposal of Spent Nuclear Fuel (SNF) will take place in a deep geological repository. The metal canister surrounding the SNF is made of cast iron and copper, designed to provide longterm containment of radionuclides. Canister is intended to be safeguarded by a multiple-barrier disposal system comprising engineered and natural barriers. Colloids and gases are mediators that can accelerate radionuclide migration and influence radionuclide behavior when radionuclides leak from the canister at the end of its service life. It is very important to consider these factors in the assessment of the long-term stability of deep dispoal repository. An experimental setup was designed to observe the acceleration of nuclide behavior due to gas-mediated transport in a simulated environment with specific temperature and pressure conditions, similar to those of a deep disposal repository. In this study, experiments were conducted to simulate gas flow within an engineered barrier under conditions reflecting 1000 years post repository closure. The experiment utilized bentonite WRK with a dry density of 1.61 g/cm³ after compaction. The compacted bentonite was subsequently saturated under a water pressure of 5 MPa, equivalent to the hydrostatic pressure found 500 meters underground. Gas was introduced into the saturated bentonite at different pressures to assess the permeation behavior of the bentonite relative to gas pressure variations. Consequently, it was observed that under specific pressures, gas permeated the saturated bentonite, ascending in the form of bubbles. Furthermore, it was noted that when a continuous flow was initiated within the bentonite, erosion took place, leading to the buoyant transportation of eroded particles upward by the bubbles. The particles transported by the bubbles had a relatively small particle size distribution, and cesium also tended to be transported by the bubbles and moved upward. When high-pressure gas is generated at the interface of the canister and the buffer, flow through the buffer can occur, and cationic nuclides such as cesium and strontium can be attached to the gas bubble and migrate. However, the pressure of the gas to break through the saturated buffer is very high, and the amount of cesium transported by the gas bubbles is very limited.
        36.
        2023.11 구독 인증기관·개인회원 무료
        The spent fuels derived from the nuclear reactor facilities may be finally disposed in a deep underground below 500 m. It majorly has uranium with minor iodine, which is a typical anionic radionuclide. In particular, radioiodine has higher mobility from its spent fuel source. It has been well known that it could freely pass through a compacted bentonite that is one of underground engineering barriers that are used to retard some nuclide’s migration from the spent fuel. We installed a small laboratory apparatus in an anaerobic glove box imitating such an underground repository and evaluated the iodine mobility in compacted bentonites with or without copper. Some copper-bearing bentonites were prepared in two types, a copper ion-exchanged form and a copper nanoparticle-mixed one. In our study, we tried to find an effect of sulfate that has an ability to retard mobile iodine from the compacted bentonite for a long-term period. Conclusively, we found an effective way to limit the iodine release from the compacted bentonite. This condition can be achievable by exchanging the bentonite interlayer cations with copper ions or by simply mixing copper nanoparticles with bentonite powder. In those cases, soluble iodine can be easily immobilized as a solid phase (i.e., marshite (CuI)) by combining with copper via the geochemical role of sulfate and indigenous SRB (sulfate reducing bacteria) of bentonite.
        37.
        2023.11 구독 인증기관·개인회원 무료
        Raman characteristics of various minerals constituting natural rocks collected from uranium deposits in Okcheon metamorphic zone in Korea are presented. Micro-Raman spectra were measured using a confocal Raman microscope (Renishaw in Via Basis). The focal length of the spectrometer was 250 mm, and a 1800 lines/mm grating was installed. The outlet of the spectrometer was equipped with a CCD (1,024256 pixel) operating at -70°C. Three objective lenses were installed, and each magnification was 10, 50, and 100 times. The diameter of the laser beam passing through the objective lens and incident on the sample surface was approximately 2 m. The laser beam power at 532 nm was 1.6 mW on the sample surface. Raman signal scattered backward from the sample surface was transmitted to the spectrometer through the same objective lens. To accurately determine the Raman peak position of the sample, a Raman peak at 520.5 cm-1 measured on a silicon wafer was used as a reference position. Since quartz, calcite, and muscovite minerals are widely distributed throughout the rock, it is easy to observe with an optical microscope, so there is no difficulty in measuring the Raman spectrum. However, it is difficult to identify the uraninite scattered in micrometer sizes only with a Raman microscope. In this case, the location of uraninite was first confirmed using SEM-EDS, and then the sample was transferred to the Raman microscope to measure the Raman spectrum. In particular, a qualitative analysis of the oxidation and lattice conditions of natural uraninite was attempted by comparing the Raman properties of a micrometer-sized natural uraninite and a laboratory-synthesized UO2 pellet. Significantly different T2g/2LO Raman intensity ratio was observed in the two samples, which indicates that there are defects in the lattice structure of natural uraninite. In addition, no uranyl mineral phases were observed due to the deterioration of natural uraninite. This result suggests that the uranium deposit is maintained in a reduced state. Rutile is also scattered in micrometer-sizes, similar to uraninite. The Raman spectrum of rutile is similar in shape to that of uraninite, making them confused. The Raman spectral differences between these two minerals were compared in detail.
        38.
        2023.11 구독 인증기관·개인회원 무료
        Post Irradiation Examination Facility (PIEF) is a test facility for nuclear fuel research and development and performance evaluation. From the past to the present, assemblies and fuel rods have been transported from nuclear power plants (NPP) several times, and various destructive and non-destructive tests have been performed. Among these, in the case of the 14×14 Westinghouse STD assemblies that are transported as a whole assembly, the top nozzle is connected to the guide tube by welding. Therefore, the fuel rods could not be removed from the assembly at the NPP, so the assemblies were transported to PIEF as is. Then, after cutting between the top nozzle and the guide tube in the pool, and the fuel rods were extracted and tested. In order to transport the assembly in the future, it is necessary to maintain stability by inserting the dummy rod into the unit cell from which the fuel rod is extracted. However, since the length of the dummy rod is almost 4 m and the diameter is about 10 mm, the dummy rod often bends while passing through the dimple spring of the grid. Additionally, when dummy rods are inserted into unit cells that are continuously empty after the fuel rods are extracted, there may be cases where the dummy rods are not inserted into the desired unit cell but are bent and incorrectly inserted into the next unit cell. The moment the dummy rods are inserted into the dimple spring of grid, a load is applied to the dummy rod due to the tension of the spring. If it can be inserted while offsetting the load, the work can be performed more smoothly. Accordingly, an underwater handling tool was developed that can be inserted while offsetting the tension of the spring. Using this handling tool applies a load to the dummy rod and rotates the dummy rod itself, offsetting the tension of the spring and allowing the dummy rod to be inserted without bending. This handling tool is equipped with a shock absorbing device to protect the dummy rod and spring, and a module to rotate the dummy rod. As a result of inserting the dummy rod using the developed handling tool, it was possible to easily insert the dummy rod into unit cells that were previously impossible to insert.
        39.
        2023.11 구독 인증기관·개인회원 무료
        It is known that ZrCl4 can be used in the chlorination process of spent nuclear fuel. However, its solubility in high temperature molten salt is very small, making it difficult to dissolve a large amount of ZrCl4. Therefore, in this study, a flange-type sealed reactor was manufactured to observe the reaction characteristics of LiCl-KCl salt and ZrCl4. LiCl-KCl salt and ZrCl4 were placed in each alumina crucible, the reactor was sealed, and heated. The temperature at the reactor surface was above 500°C and maintained at that temperature for 48 hours. After completion of the reaction, the reactor was opened and the reaction products were recovered from each alumina crucible. The crystal structure of the reaction product was identified through XRD analysis, and the concentration of Zr was analyzed using ICP. Reaction characteristics were observed according to the molar ratio of ZrCl4 added to the number of moles of KCl in LiCl-KCl salt. The molar ratios of ZrCl4 to KCl were 0.5, 1, 2, and 3, respectively. As a result of each experiment, more than 95% of the injected ZrCl4 was vaporized and there was almost no residue in the ZrCl4 crucible. In the LiCl- KCl crucible, the weight increased in proportion to the amount of ZrCl4 added. As a result of XRD analysis, K2ZrCl6 was confirmed in all LiCl-KCl salt product. When the ZrCl4/KCl molar ratio was 2 and 3, LiCl-KCl could not be confirmed. Additionally, when the ZrCl4/KCl molar ratio was 1, LiCl was identified, but KCl was not found. Almost all of the KCl appears to have reacted with ZrCl4. ICP analysis results showed that the Zr concentration was proportional to the amount of ZrCl4 added in each LiCl-KCl salt, and exceeding the number of moles of reaction with KCl in the LiCl-KCl salt was observed. Therefore, these experimental results showed that ZrCl4 can be dissolved in LiCl-KCl salt at a maximum concentration higher than its solubility.
        40.
        2023.11 구독 인증기관·개인회원 무료
        It has been known that as oxide layer (ZrO2) forms on the nuclear fuel cladding during irradiation in nuclear power plants, the corrosion kinetics are influenced by various parameters such as chemical environments. One of those environments, crud deposition driven by coolant chemistry has an adverse effect on the formation of oxide (ZrO2) and leads to increase thickness of the layer. In this study, crud formation was performed through loop experiment equipment on the surface of intentionally-made oxide layer (ZrO2) on cladding tubes and then the composition and characteristics of cruds were examined for the investigation of nuclear power plant environment. As a result, various cruds in composition and microstructure were formed depending on the exquisite methods and conditions such as metal ion concentration.
        1 2 3 4 5