검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 280

        22.
        2022.10 구독 인증기관·개인회원 무료
        The fuel fabrication facility has been built and is being operated by KAERI since licensing research reactor fuel fabrication in 2004. After almost 20 years of operation, outdated equipment for fabrication or inspection has been replaced by automated, digitalized ones to assure a higher quality of nuclear fuels. However, the generation of a large amount of radioactive waste is another concern for the replacement in terms of its volume and various types of it that should be categorized before disposal. The regulatory body, NSSC (Nuclear Safety and Security Commission) released a notice related to the classification of radioactive wastes, and most accessory equipment can be classified into the clearance levels, called self-disposal waste. In this study, the practice of self-disposal of metal radioactive waste is carried out to reduce its volume and downgrade its radioactivity. For metal radioactive waste, which is expected to occupy the most amount, analysis status and legal limitations were performed as follows: First, the disposal plan was established after an investigation of the use history for equipment. Second, those were classified by types of materials, and their surface radio-contamination was measured for checking self-disposable or not. After collecting data, the plan for the self-disposal was written and submitted to the Korea Institute of Nuclear Safety (KINS) for approval.
        24.
        2022.10 구독 인증기관·개인회원 무료
        In order to dispose of spent nuclear fuel (SNF) in deep geological repository, source term evaluation considering its specification, enrichment, burnup, cooling time should be performed. In this study, the measured values of Takahama-3 pressurized water reactor SNF (WH 17×17) samples were analyzed with SCALE 6.1/ORIGEN-S and TRITON code calculation results for validation. Unlike the ORIGENS code, TRITON code calculations differed from two-dimensional neutron flux distribution by using the multi-group cross-section library. Both calculation results from ORIGEN-S and TRITON code showed higher errors in 234U, 239Pu, and 241Pu compared to other actinide nuclides. In the case of axial locations of fuel rods in fuel assembly, fuel rods located at the edge of the fuel assembly presented increased errors due to nuclear reaction cross-section. Overall, the ORIGEN-S predictions informed more accurate agreement with the measured results compared with TRITON results. Especially to 235U, 239Pu, and 240Pu radionuclides, ORIGEN-S errors were denoted more than twice as low as the TRITON results. Comparing the calculation results with experimental results implied that the ORIGENS code was more accurate code than the TRITON code for source term evaluation.
        26.
        2022.10 구독 인증기관·개인회원 무료
        In biosphere assessment modeling for the safety assessment of the Wolsong LILW disposal facility, the multi-compartment modeling in which all radionuclides transport is described quantitatively in terms of transfer factors between various environmental compartments has been implemented. In order to reflect the actual transfer mechanisms of 14C in the environment the specific activity (SA) modeling approach can be applied as an alternative to the previous transfer factors (TF) approach. The assumption of full SA equilibrium throughout the terrestrial environment is completely satisfactory for 14C release to the atmosphere if the 12C is emitted as 14CO2. This is the only form that is readily taken up by plants, so that active carbon is incorporated into the plant via photosynthesis at the same rate as stable carbon. Accordingly, the 14C concentration in Bq/g stable carbon is the same in the plant as it is in the air. And animals take up carbon almost entirely through ingestion and the SA ratio in the plant is maintained in the animal. In this study, a specific activity model for 14C was implemented in a GoldSim biosphere assessment model. From the literature survey for existing specific activity models developed, the IAEA model was selected. The farming scenario utilizing well water was simulated and the resulting ingestion dose conversion factors (DCFs) from the IAEA SA model were compared with those of the TF approach. The parameter value for the concentration of stable carbon in the air (gC/m3) is used as 0.20 gC/m3 considering the Suess effect. The dose coefficient for food ingestion used for dose calculations was taken from ICRP-72 as 5.8E-10 Sv/Bq. It was found that the ingestion DCFs of the SA model showed about 3 times lower than those of the TF model in the farming scenario through irrigation of well water, so it is expected that the SA approach could be applied for a more realistic assessment. Though the comparisons were made on the results from the terrestrial ecosystem only in this study, it would be necessary to investigate the applicability of the SA modeling approach for 14C through extensive comparisons and analysis including an aquatic ecosystem, and through parameters survey suitable to the domestic condition.
        27.
        2022.10 구독 인증기관·개인회원 무료
        In the design of a spent-fuel (SF) storage, the consideration of burnup credit brings the benefits in safety and economic views. According to it, various SF burnup measurement systems have been developed to estimate high fidelity burnup credit, such as FORK and SMOPY. Recently, there are a few attempts to localize the SF burnup measurement system in South Korea. For the localization of SF burnup measurement systems, it is very important to build the isotope inventory data base (DB) of various kinds of SFs. In this study, we performed DeCART2D/MASTER core follow calculations and McCARD single fuel assembly (FA) burnup analyses for Hanbit unit 3 and confirmed the characteristic of the isotope inventory over burnup. Firstly, the core follow calculations for Cycles 1~7 were performed using DeCART2D/MASTER code system. The core follow calculation is very realistic and practical because it considers the design conditions from its nuclear design report (NDR). Secondly, the Monte Carlo burnup analyses for single FAs were conducted by the McCARD Monte Carlo (MC) transport code. The McCARD code can utilize continuous energy cross section library and treat complex geometric information for particle transport simulation. Accordingly, the McCARD code can provide accurate solutions for burnup analyses without approximations, but it needs huge computing resources and time burden to perform whole-core follow calculations. Therefore, we will confirm the effectiveness of the single McCARD FA burnup analyses by comparing the DeCART2D/MASTER core follow results with the McCARD solution. From the results, the use of single FA burnup analyses for the establishment of the DBs will be justified. Various FAs, that have different 235U enrichments and loading pattern of fuel rods and burnable absorbers, were considered for the burnup analyses. In addition, the results of the sensitivity analyses for power density, initial enrichment, and cooling time will be presented.
        28.
        2022.10 구독 인증기관·개인회원 무료
        The effect of Li2O addition on precipitation behavior of uranium in LiCl-KCl-UCl3 has been investigated in this study. 99.99% LiCl-KCl eutectic salt is mixed with 10wt% UCl3 chips at 550°C in the Pyrex tube in argon atmosphere glove box, with 10 ppm O2 and 1 ppm H2O. Then, Li2O chunks are added in mixed LiCl-KCl-UCl3 and the system has been cooled down to room temperature for 10 hours to form enough UO2 particles in the salt. The solid salt has been taken out from the glove box, and cut into three sections (top, middle and bottom) by low-speed saw for further microscopic analysis. Three pieces of solid salt are dissolved in deionized water at room temperature and the solution is filtered by a filter paper to collect non-dissolved particles. The filter paper with particles is baked in vacuum oven at 120°C for 6 hours to evaporate remaining moisture from the filter paper. Further analysis was performed for the powder remaining on the filter paper, and periphery of the powder (cake) on the filter paper. Scanning electron microscopy (SEM), electron diffraction spectroscopy (EDS), and X-ray powder diffraction (XRD) are adopted to analysis the characteristic of the particles. From SEM analysis, the powders are consisted of small particles which have 5 to 10 m diameter, and EDS analysis shows they are likely UO2 with 23 at. % of uranium and 77 at. % oxygen. Cake is also analyzed by SEM and EDS, and needle like structures are widely observed on the particle. The length of needle is distributed from 5 to 20 m, and it has 6 to 10 at. % of chlorine, which are not fully dissolved into deionized water at room temperature. From XRD analysis, the particles show the peak position of UO2, and the result is well matched with the SEM-EDS results. We are planning to add more Li2O in the system for fully reacting uranium in UCl3, and compare the results to find the effect of Li2O concentration on UO2 precipitation.
        32.
        2022.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Minuartia laricina (L.) Mattf. is a Korean native plant with high potential as a commercial flowering potted plant due to its compactness and long flowering duration. However, because this plant is a groundcover, it is susceptible to lodging and leggy growth. Therefore, this study investigated the effects of plant growth retardants (PGRs) on the inhibition of stem elongation and flowering characteristics of M. laricina. Commercial products, Trimmit, Cycocel, and B-Nine, were used for the exogenous PGR application of paclobutrazol (PBZ), chlormequat chloride (CCC), and daminozide (DMZ), respectively. Application concentrations were 50 and 100 mg·L-1 for PBZ; 100, 500, and 1,000 mg・L-1 for CCC; and 500, 1,000, and 2,000 mg·L-1 for DMZ. Paclobutrazol was the only PGR that inhibited stem elongation. The stem lengths of the plants treated with 50 or 100 mg·L-1 PBZ were 2.2 cm (13%) or 9.8 cm (57%) shorter, respectively, than those of the control. 50 mg·L-1 PBZ retarded stem growth effectively without negatively affecting flowering or other growth parameters, whereas 100 mg·L-1 PBZ caused excessive dwarfing and significantly reduced flowering by 59%. CCC and DMZ applications were ineffective for growth control. Flowering time was accelerated with most PGRs, except for 2,000 mg·L-1 DMZ, reducing the time to flowering by 2–8 days. These results indicate that the stem growth of M. laricina was successfully inhibited with PBZ but not with CCC or DMZ. Thus, we concluded that a single application of 50 mg·L-1 PBZ or similar treatment is effective in miniaturizing M. laricina without causing harm to its growth or aesthetic value, such as the flower number. Additionally, because CCC and DMZ are not persistent in the growing medium, testing multiple application times for these PGRs is crucial.
        4,000원
        33.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Under anoxic conditions, this study investigated removal of dissolved As(III) by Si and Al oxides including natural sand, chemically washed sand (silica), alumina, and activated alumina. Despite the similar surface area, natural sand showed greater extents of As(III) sorption than chemically washed sand. This was likely due to the high reactivity of Fe(oxyhydr)oxide impurities on the surface of natural sand. For both sands, As(III) sorption was the greatest at pH 7.1, in agreement with the weakly dissociating tendency of arsenous acid. Also, the least sorption was observed at pH 9.6. At basic pH, elevated silicate, which originated from the dissolution of silica in sands, would compete with As(III) for sorption. Due to the highest surface area, activated alumina was found to quantitatively immobilize the initially added As(III) (6.0×10−7 -2.0×10−5 M). Alumina showed As(III) sorption compared to or greater than chemically washed sand, although the former had less than 6% of the surface of area the latter. The greater reactivity of alumina than chemically washed sand can be explained by using the shared charge of oxygen.
        4,000원
        34.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Iris laevigata, which belongs to the Iridaceae, is now designated as an “endangered” (EN) grade by Korea Forest Service because it does not have many natural sites known for its reckless development and damage to its natural habitats. This study was carried out to establish the propagation protocol from seed to restore the native habitat of the I. laevigata and to utilize it for ornamental purposes. Basically, the appearance and internal structure of seeds were observed and imbibition experiments were conducted. Germination rate was measured by cold stratification experiment, after warm followed by cold stratification experiment, and GA3 treatment experiment. The seeds had underdeveloped embryos, which had grown to about 25% of those of fully matured seed before germination. In the controlled laboratory experiment, after cold stratification at 5°C for 0, 4, 8, or 12 weeks, the seeds germinated to 0, 11.7, 43.4, or 51.7%, respectively, after 4 weeks of incubation at 25°C. After warm stratification (25°C, 8 weeks) followed by cold stratification for 0, 4, 8, or 12 weeks, the seeds germinated to 0, 51.7, 85.0, or 88.3%, respectively, after 4 weeks of incubation at 25°C. GA3 treatment did not overcome the dormancy. Our study determined the dormancy type of I. laevigata seed. Imbibition experiments showed that there was no physical dormancy, and it was also found that there was an underdeveloped embryo when it was observed that the embryo was growing according to the period of incubation. A nd t he e m bryo grew a t relatively w arm temperatures. It is concluded that the seeds of I. laevigata have morphophysiological dormancy (deep simple MPD). This is the first report to determine the dormancy type in seeds of this valuable ornamental plant.
        4,000원
        35.
        2022.05 구독 인증기관·개인회원 무료
        Currently, dismantling technology for decommissioning nuclear power plants is being developed around the world. This study describes the cutting technology and one of the technologies being considered for the RV/RVI cutting of Kori Unit 1. The dismantling technology for nuclear power plants include mechanical and thermal methods. Mechanical cutting methods include milling, drill saw, and wire cutting. The advantages of the mechanical method are less generating aerosol and less performance degradation in water. However, the cutting speed is slow and the reaction force is large. Thermal cutting methods use heat sources such as plasma arcs, oxygen, and lasers. The advantages of thermal method are fast cutting speed, low reaction force and thick material cutting. On the other hand, they have problems with fume and melt. Among them, the cutability of the oxygen cutting method is better in carbon steel than in stainless steel. In order to cut the RV/RVI of the Kori Unit 1, the applicability of fine plasma, arc saw, and band/ wheel saw is being reviewed. For RV cutting, the applicability of arc saw and oxy-propane is being considered Because RV is mostly made of carbon steel. However, since the flange is cladded with stainless steel, the use of mechanical methods such as wire saws should be considered. In the case of RVI, since it has a complicated shape and is made of stainless steel, it seems necessary to review various cutting methods. In addition, it will be necessary to minimize radiation exposure of workers by cutting underwater cutting.
        36.
        2022.05 구독 인증기관·개인회원 무료
        Many countries are developing various mechanical cutting technologies to dismantle nuclear facility. However, most of mechanical cutting technologies have a problem like the degradation of tool life due to the Hard-Machining materials. To solve this problem, lab-scale test was performed with a Plasma Assisted Machining (PAM) technology and 25 mm of thickness Inconel 600 plate. Commonly, the strength of metals decreases by exposure at high temperature. And, previous study reported that strength of Inconel 600 is degraded above 500°C. This softening effect was applied to Inconel 600 cutting test. The optimal conditions such as the plasma torch power and the feed rate were determined by this study. As a result, the surface temperature of Inconel 600 was reached up to 500°C under the conditions which is 8.4 kW of plasma torch power and 150–250 mm·min−1 of feed rate. And it was confirmed that the tool life was improved under the conditions. In order to apply PAM for various Hard- Machining materials, it is necessary to investigate the softening temperature of Hard-Machining materials, the plasma torch power and feed rate.
        37.
        2022.05 구독 인증기관·개인회원 무료
        Various cutting technologies are being developed for dismantling nuclear power plants. these technologies are including mechanical and thermal methods. For example, mechanical cutting methods include sawing, drilling and milling. But, due to the strength of material, mechanical cutting methods have limits of cutting depth and tool life. Therefore, this milling machine assisted plasma torch was developed to improve the limits. And this machine has the principle of softening effect caused by the high temperature. In this work, this developed device was evaluated in view of the cutting depth and tool life in cutting process. For this process, a plasma torch was attached to the front of the endmill processing path to heat the Inconel 600. As results, compare to conventional milling, when the plasma torch power is 6.4 kW, the cutting depth was increased by 4 mm at condition (feed rate is 100 mm·min−1, tool diameter is 10 mm, rotating speed is 1,000 rpm). And cutting length increase 2 times from 300 mm to 600 mm at 16 mm of tool diameter.
        38.
        2022.05 구독 인증기관·개인회원 무료
        This paper intends to present considerations on the question of what is the “load standard” or “design load” for integrity evaluation under normal transportation conditions and what type of design load is good for users. This suggests a direction for subsequent research on producing design loads that transport business companies can utilize without difficulty. Several studies have been conducted to evaluate the integrity of spent nuclear fuel during normal transportation. A representative study recently conducted is the Multi-modal Transportation Test (MMTT) conducted using a commercial spent nuclear fuel cask by US DOE in 2017. In Korea, additional transport tests were planned to acquire sufficient test data under the conditions of road and sea transport considering the Korean situation. As a result, road transport tests were carried out in 2020 and sea transport tests were carried out in 2021. In the road transport test, a driving test that simulates various road conditions and a test that cycled a 4.5 km road eight times were performed. In most cases, the maximum acceleration of less than 1 g occurred, and the maximum strain was less than 48 με. For the sea transport test, the magnitude of both the maximum acceleration and the maximum strain were lower than those in the road transport test. We concluded tentatively that the integrity of spent fuel under normal conditions of transport was satisfactory with a large margin. However, when the storage business is realized and the transport of spent fuel becomes visible, the storage and transport business companies will have to prove the maintenance of the integrity of the spent fuel under normal transport conditions at the request of the regulatory agency. The transport business companies can transport the spent nuclear fuel by using different types of transport casks and different types of trucks and ships from those used in the tests mentioned above. However, it is absurd to have to prove the integrity of spent nuclear fuel by performing expensive tests again. Therefore, in this study, the design load that can be used by transport business companies is to be presented. The design load to be presented should satisfy the following requirements. The design load should be applicable including some differences in the transport cask or transport system, or different design loads should be presented according to the differences. The location where this design load is applied is to be specified (e.g. fuel rod, basket, internal structure). Requirements according to the operating speed of the transport system should be presented together. The type of design load is to be presented (e.g. PSD, SRS, FDS etc.). Other types of standards may be presented. For example, a speed limit for a vehicle carrying spent nuclear fuel may be suggested, or a speed limit for a vehicle passing through a speed bump may be suggested. In order to present such a reliable design load, a multi-axis vibration excitation shaker table test will be carried out. Though this shaker table test, the behavior of the nuclear fuel assembly is closely evaluated by applying the data obtained from the road and sea transport tests previously performed as an input load. In addition, FDS (Fatigue Damage Spectrum) will be produced and applied to experimentally evaluate the durability of fuel assemblies under normal transport conditions.
        39.
        2022.05 구독 인증기관·개인회원 무료
        Bayesian statistics, which is an approach to analyzing data based on Bayes’ theorem, is currently widely used in all fields. However, it has been applied very limitedly to studies related to nuclear nonproliferation. Therefore, this paper provides a knowledge base and directions for using various Bayesian techniques in nuclear non-proliferation. First, the concepts and advantages of the Bayesian approach are summarized and the basic solving methods of Bayesian inference are explained. The Bayesian approach enables more precise posterior estimation using the prior probability and the likelihood functions. To solve Bayes’ theorem, it is necessary to use the conjugate prior distribution, which is analytically solvable, or to use a numerical approach with computing power. Next, for several Bayesian statistics methods, the purpose of use and the mathematical derivation process are described. Bayesian linear regression analysis aims for obtaining a function that outputs the closest value to data of variables and results. Factor analysis is mainly used to derive a smaller number of unobserved latent variables that can represent observed variables. The logit and probit model are nonlinear regression models for when the outcome is binary. The hierarchical model is to analyze by introducing hyper-parameters in an integrated manner when there are several groups of similar data. The Bayesian approach of these methods is generally based on the numerical solution of the Bayesian inference of the multivariate normal distribution. Finally, the previous researches that each introduced method have been applied to nuclear non-proliferation are investigated, and research topics that can be applied in the future are suggested. Bayesian statistics have been mainly used for precise estimation of the amount, location, and radioactivity spectrum of nuclear materials using detectors. Using Bayesian approach, it will be possible to perform various analyzes. For example, the change of activeness of nuclear program can be estimated by Bayesian inferences on the frequency and scale of nuclear tests. And it can be tried predicting the production of plutonium according to the core configuration and burnup using the Bayesian linear regression. Also, by introducing the Bayesian approach to factor analysis or logit analysis of nuclear development motives or nuclear proliferation probability, it can be expected to improve precision. With the development of computer technology, the use of Bayesian statistics increases rapidly. Based on the theory and applied topics summarized in this paper, it is expected that Bayesian statistics will be more actively used for nuclear non-proliferation in the future.
        40.
        2022.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In Korea livestock farms breeding cattle have been suffering from re-emerging problems of Brucella (B.) abortus infection while steady decline of bovine brucellosis. Therefore, this study underscored the identification and association of etiological agent of brucellosis in cattle in South Korea. The incidence of brucellosis in cattle was analyzed by bacteriological and molecular methods in 187 brucellosis-suspicious farms of 11 regions between 2018 and 2020. Brucella isolates from various specimens were identified by Brucella-specific multiplex PCR. Epidemiological data were collected by local official veterinarians through history taking from farmers and animal data systems. In 230 of 560 cattle (40.9%) and 94 of 187 farms (50.3%), a total of 313 B. abortus were isolated from various specimens, the majority of isolates were from supramammary lymph node (41%). In epidemiological findings, the majority of positive cases were mainly caused by resurgence (43.7%) and unknown (37.2%). Of 94 positive cases isolated B. abortus, abortion in cattle infected by B. abortus occurred in 51 farms (54.3%) where led to resurgence in 30 farms and environmental survival of B. abortus in 9 farms. Consequently, these findings revealed the existence of etiological agent of bovine brucellosis in Korea, which still occurred at low levels in distinct regions where are allowed to call for persistent biosecurity. Thus, we highlight that brucellosis in Korea needs to take more effective control strategies with potential evidence. Moreover it is ultimately important to maintain a constant monitoring for eradication of brucellosis.
        4,000원
        1 2 3 4 5