검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 305

        21.
        2022.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The mechanosynthesis route is a physical top–down strategy to produce different nanomaterials. Here, we report the formation of graphene nanoribbons (GNRs) through this route using carbon bars recovered from discarded alkaline batteries as raw material. The mechanosynthesis time (milling time) is shown to have an influence on different features of the GNRs such as their width and edges features. TEM revealed the presence of GNRs with widths of 15.26, 8.8, and 23.55 nm for the milling times of 6, 12, and 18 h, respectively. Additionally, the carbon bars evolved from poorly shaped GNRs for the shortest milling time (6 h) to well-shaped GNRs of oriented sheets forming for the longest milling time. Besides GNRs, graphene sheets (GNS) of different sizes were also observed. The Raman analysis of the 2D bands identified the GNS signal and confirmed the GNRs nature. ID/IG values of 0.21, 0.32, and 0.40 revealed the degree of disorder for each sample. The in-plane sp2 crystallite sizes ( La) of graphite decreased to 91, 60, and 48 nm with increasing peeling time. The RBLM band at 288 cm− 1 confirmed the formation of the GNRs. Mechanosynthesis is a complex process and the formation of the GNRs is discussed in terms of a mechanical exfoliation, formation of graphene sheets and its fragmentation to reach GNR-like shapes. It is shown that the synthesis of GNRs through the mechanosynthesis route, besides the use of recycled materials, is an alternative for obtaining self-sustaining materials.
        5,400원
        22.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Fluorescent nanostructures based on carbon, or carbon dots, are attracting much attention and interest because of their diverse properties which can be applied in several fields of knowledge, such as optics, biomedicine, environmental research, among others. Such properties are in part, derived from its intrinsic luminescence from tunable functional groups. In this work, we produced carbon nanodots (CND) using agro-industrial residues, such as Lolium perenne and malt bagasse. The methods used were conventional hydrothermal syntheses and microwave-assisted hydrothermal synthesis. To the best of our knowledge, this is the first time that carbon dots synthesized from this ryegrass type are reported. The synthesis methods were one step (no catalyst, base, or acid were added for passivation), and the functional groups responsible for the luminescence and high solubility in water were identified by infrared spectroscopy, being mainly C=O, C–OH, C–N, and N–H. According to our theoretical studies, the C=O group introduced a new energy level for electronic transitions that can affect the emission properties. Fluorescence images of osteoblasts using CNDs were acquired and their chelating property towards Pb2+ and Cr6+ detection was tested.
        4,200원
        23.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this report, we successfully prepared nitrogen-doped porous carbon (N-PC)/manganese dioxide ( MnO2) composite for a high-performance supercapacitor. X-ray diffraction data revealed the α-MnO2 phase. Transmission electron microscopy confirmed that the nanostructured α-MnO2 nanoparticles were coated on the surface of N-PC. The N-PC/α-MnO2 composite delivered a capacitance of 525.7 F g− 1 at the charging current of 1.0 A g− 1. The higher capacitance of the composite could be owing to the synergy of MnO2 and N-PC. Besides, the electrode exhibited a 14.7% capacitance loss after 6000 charge– discharge cycles at 10 A g− 1 indicating good electrochemical stability.
        4,000원
        24.
        2021.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The phenomena of single-layer graphene resonant photoluminescence and Raman radiation are discussed taking into account the photo-generated electron–hole Coulomb interaction. On the base of general principles of a many-particle interactions and the interband resonance optical transitions a photon radiation new mechanism (Coulomb mechanism) is proposed. Through Stokes 2D’-mode particular case analysis has shown that the graphene photoluminescence and the resonant Raman radiation are characterized by the same frequency shifts. Probabilities of resonance photo-radiation processes have been presented where the electron–hole Coulomb attraction has been taken into account. The probabilities are the same fourth-order small values. The weak photo-radiation Coulomb mechanism has a common character. It is applicable to both zero and nonzero band gap crystals.
        4,000원
        25.
        2021.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Activated non-graphitizable hard carbon using orange peel with mesoporous structure has been prepared by pyrolyzation at 700, 800, 900 °C using chemical activation method. The activated orange peel-derived hard carbon has been characterized for its mesoporous and disordered structure. TG-DSC gives the information for the changes about sample composition and thermal stability of the materials. Increasing the carbonization temperature for orange peel precursor using NaOH as activating agent, elevates the pore diameter, which thereby facilitating the insertion of Na+. Raman and X-ray diffraction confirms the presence of disordered carbon. The surface morphology of the material was analyzed by scanning eletron microsope and nitrogen ( N2) adsorption and desorption analysis give the morphology, mesopore size (3.374, 3.39 and 4 nm) and surace area (60.164, 58.99 and 54.327 m2/g) of the orange peel-derived hard carbon. Hence, this work strongly evidences that the biomass-derived hard carbon with good porosity and paves way of superior electrochemical performance for emerging sodium ion batteries.
        4,000원
        26.
        2021.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The paper deals with a comparative study of equilibrium and kinetics of phenol adsorption from aqueous solutions by means of commercial activated carbons and semi-cokes, differing in the nature of feedstock, production technology and structural characteristics. The main adsorption parameters are calculated with the usage of Langmuir and Dubinin–Radushkevich equations. The change in the characteristics of the structure and state of the surface of semi-coke P2 as a result of modification is estimated. It was found that phenol adsorption kinetics is described by a pseudo-second-order model. The adsorption rate constants and the coefficient of external diffusion mass transfer are calculated. It is proved that phenol extraction from aqueous solutions presents a mixed-diffusion nature, and the process rate is limited by external mass transfer for 13 min for SKD-515 and 22 min for ABG. To increase the adsorption capacity, the oxidative modification of the semi-coke P2 was carried out. Considering the economic and technological aspects, ABG semi-coke is recognized as a promising sorbent for phenol extraction from aqueous media.
        4,000원
        27.
        2021.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Doped porous carbon materials have attracted great interest owing to their excellent electrochemical performance toward energy storage applications. In this report, we described the synthesis of nitrogen-doped porous carbon (N-PC) via carbonization of a triazine-based covalent organic framework (COF) synthesized by Friedel–Crafts reaction. The as-synthesized COF and N-PC were confirmed by X-ray diffraction. The N-PC exhibited many merits including high surface area (711 m2 g−1), porosity, uniform pore size, and surface wettability due to the heteroatom-containing lone pair of electron. The N-PC showed a high specific capacitance of 112 F g−1 at a current density of 1.0 A g−1 and excellent cyclic stability with 10.6% capacitance loss after 5000 cycles at a current density of 2.0 A g−1. These results revealed that the COF materials are desirable for future research on energy storage devices.
        4,000원
        30.
        2021.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Engineering the microstructure of the carbonaceous materials is a promising strategy to enhance the capacitive performance of supercapacitors. In this work, nanostructured Black Pearl (1500 BP) carbon which is a conductive carbon being commercially used in printing rolls, conductive packaging, conductive paints, etc. is analyzed for its feasibility as an electrode material for Electric Double-Layer Capacitors (EDLCs). To achieve that commercial Black Pearl (BP), carbon is treated with mild acid H3PO4 to remove the impurities and enhance the active sites by regulating the growth of agglomerates and creating micropores in the nano-pigments. Generally, the coalescence of nanoparticles owing to their intrinsic surface energy has tendency to create voids of different sizes that act like meso/micropores facilitating the diffusion of ions. The electrochemical performance of BP carbon before and after chemical activation is investigated in aqueous ( H2SO4, KOH and KCl) and a non-aqueous electrolyte (1 M TEMABF4 in acetonitrile) environment employing different electrochemical techniques such as Cyclic Voltammetry (CV), Galvanostatic charge/discharge (GCD) and Electrochemical Impendence Spectroscopy (EIS). The chemically activated BP carbon delivers the highest specific capacitance of ∼156 F g−1 in an aqueous electrolyte, 6 M KOH. The highest specific power, ~ 15.3 kW kg−1 and specific energy, 14.6 Wh kg−1 are obtained with a symmetric capacitor employing non-aqueous electrolyte because of its high working potential, 2.5 V.
        4,000원
        31.
        2021.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Graphene Quantum Dots (GQDs), zero-dimensional nanoparticles which are derived from carbon-based sources owned the new pavement for the energy storage applications. With the varying synthesis routes, the in-built properties of GQDs are enhanced in different categories like quantum efficiency, nominal size range, and irradiation wavelength which could be applied for the several of energy and optoelectronics applications. GQDs are especially applicable in the specific energy storage devices such as super capacitors, solar cells, and lithium-ion batteries which were demonstrated in this work. This paper critically reviews about the synthesis techniques used for the GQDs involving energy storage applications with increased capacitance, energy conversion, retention capability, and stability.
        4,300원
        32.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Nickel nanopowders are obtained by the spark discharge method, which is based on the evaporation of the electrode surface under the action of the discharge current, followed by vapor condensation and the formation of nanoparticles. Nickel electrodes with a purity of 99.99% are used to synthesize the nickel nanoparticles in the setup. Nitrogen is used as the carrier gas with a purity of 99.998%. XRD, TEM, and EDX analyses of the nanopowders are performed. Moreover, HRTEM images with measured interplanar spacings are obtained. In the nickel nanopowder samples, a phase of approximately 90 wt% with an expanded crystal lattice of 6.5% on average is found. The results indicate an unusual process of nickel nanoparticle formation when the spark discharge method is employed.
        3,000원
        34.
        2020.09 구독 인증기관 무료, 개인회원 유료
        The calls for reform of investment treaty regime are neither novel nor entirely unexpected. And the need for that reform has recently reached its pitiful nadir where the UNCITRAL Working Group III gathered for its first meeting in Vienna back in November-December 2017 to discuss states’ concerns about investor-state dispute settlement. States’ concerns about the reform have been repeatedly referred to in recent publications, but international scholars have not yet discussed Russia's stance in detail. In the following an attempt has been made to fill the gap in literature by introducing the Russian position which contrasts nicely with Canada or the EU. Why is this important? Russia is a significant state in the UNCITRAL Working Group III and any slight shifts in its approach in the UNCITRAL reforms are closely watched. It is the right time to provide an analytical framework for understanding the Russian position in these reform dynamics.
        6,700원
        37.
        2020.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Facile process for the fabrication of multi-layer graphene thin film (MLGF) is reported here. Multi-layer graphene dispersion prepared by liquid-phase exfoliation of graphite was sprayed on a glass substrate by spray pyrolysis method. The structural, optical and electrical properties of the deposited MLGF are investigated. The sheets of graphene are deposited uniformly on the substrate and distribution of small graphene sheets with size of 300–500 nm can be observed in SEM image. AFM and micro-Raman results ensured that the spray-coated graphene thin film is composed of multi-layer graphene sheets. Spray coated graphene thin film showed significant optical transparency of 57% in the visible region (400–550 nm). MLGF possessed the electrical conductivity in the order of 744 S/m with surface resistivity of 3.54 k Ω/sq. The prepared liquid-phase exfoliated graphene thin film showed superior photoelectric response. The results of this study provided a framework for fabricating an optimized MLGF using a spray pyrolysis route for optoelectronics devices.
        4,000원
        38.
        2020.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We studied trichloroethylene (TCE) adsorption from aqueous solutions in equilibrium conditions by activated carbons (AC). They differ in raw materials, porous structure characteristics and chemical state of the surface. TCE adsorption isotherms were found to have a concave shape, which is characteristic of a sorbent—sorbate weak interaction. It can be a result from electrostatic repulsion of organic matter molecule from polar groups on carbon surface and adsorbed water molecules. The basic parameters of adsorption were calculated by the Dubinin–Radushkevich equation. We determined that for AG-OV-1 and SKD-515 in the coordinates of the Dubinin–Radushkevich equation, there are two linear plots suggesting adsorption in pores of different sizes or reorientation of adsorbate molecules on the activated carbon surface. The efficiency of TCE removal by the activated carbons was evaluated. To reduce the TCE to the maximum allowable, the lowest sorbent consumption was observed for AC with the highest values of surface area and micropore volume. However, the high cost and hydrophobicity of these adsorbents make it impractical to use them in adsorption columns with a fixed layer. We offered an adsorbent that reasonably combines extraction efficiency, ease of operation and economic feasibility.
        4,000원
        1 2 3 4 5