검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 829

        41.
        2023.05 구독 인증기관·개인회원 무료
        Electricity generation using nuclear power has various advantages, such as carbon reduction, but the treatment of nuclear waste is emerging as a big issue in many countries. The development of technology that can selectively remove radionuclides from liquid radioactive waste is one of the ways to reduce nuclear waste. Here, we assessed a new way of removing radioactive cobalt from a liquid using an aptamer. Aptamers specifically binding cobalt ions were selected through systematic evolution of ligands by exponential enrichment (SELEX). Their binding strength and stability of their complexes with cobalt were analyzed through surface plasmon resonance assay and 2D program Mfold, respectively. The optimal aptamer/bead conjugate conditions for binding cobalt were established using a FA-C1 aptamer with the strongest binding to cobalt. Under these conditions, more than 80% of radioactive cobalt was removed, and more than 99.95% of removed cobalt was recovered. These results proved that radioactive cobalt removal using this aptamer can effectively reduce liquid radioactive waste. This means that the aptamer/bead complex can be utilized to remove various radioactive metal ions.
        54.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        시금치의 주요 해충인 흰띠명나방(Spoladea recurvalis) 유충의 살충제 5종에 대한 감수성을 검정하였다. Lufenuron EC, chromafenozide EC, chlorantraniliprole WP, tebufenozide WP, pyridalyl EW는 각각 2(12.5 ppm), 4(12.5 ppm), 8(2.5 ppm), 4(20.0 ppm), 8(12.5 ppm)배 의 희석농도에서 90% 이상의 높은 살충활성을 보였다. 추천농도로 경엽처리 후 7일이 경과된 시금치 잎에 흰띠명나방 유충이 72시간 동안 노출되 었을 경우 chromafenozide EC, chlorantraniliprole WP, tebufenozide WP, pyridalyl EW의 살충률은 각각 98.3%, 100%, 95.0%, 100%로 나타나 높은 잔효성을 보였다. 흰띠명나방에 대한 방제효과를 2개소(화성, 연천)에서 포장검정 결과, 5종의 약제 모두 2개소에서 약제처리 7일 경과 후 90% 이상의 방제효과를 보였으며 2배량에서도 약해가 없어 향후 흰띠명나방 방제약제로 시금치에 활용이 가능할 것으로 판단된다.
        4,000원
        58.
        2022.10 구독 인증기관·개인회원 무료
        Plasma Arc Melter (MSO) system has been developed for the treatment and the stabilization of various kinds of hazardous and radioactive waste into the readily disposable solidification products. Molten salt oxidation system has been developed for the for the treatment of halogen- and sulfurbearing hazardous and radioactive waste without emissions of PCDD/Fs and acid gases. However, PAM system has showed some difficulty in the off-gas treatment system due to the volatilization of radionuclides and toxic metals at extremely high-temperature plasma arc melter and the emissions of acid gases. MSO system has also showed the difficulty in the treatment of spent molten salt into the disposable waste form. Present study discussed the results of organics destruction performance tests for the PAM-MSO combination system, which is proposed and developed to compensate the drawbacks of each system. The worst-case condition tests for the organics destruction were conducted at lowest temperatures and the worst-case condition tests for the retention of metals and radionuclides were conducted at highested temperatures under the range of normal operating condition. For the worst-case organic destruction test, C6H5Cl was selected as a POHCs (Principal Organic Hazardous Constituents) because of its high incinerability ranking and the property of generation of chlorine gases and PCDD/Fs when incompletely destroyed. Simulated concrete waste spiked with 1 L of C6H5Cl was treated and the emissions of 17 kinds of PCDD/Fs and other hazardous gases such as CO, THCs, NOx, SO2 and HCl/Cl2 were measured. For the worst-case condition tests for the retention of metals and radionuclides, Pb and Cs were selected because of its high volatility characteristics. The emissions of PCDD/Fs was extremely lowered than the emission limit and those of other hazardous constituents were below their emission limit. The results of performance tests on the organics destruction suggested that tested PAM-MSO combination system could readily treat PCBs-bearing spent insulation liquid, spent ion-exchange resins used for the treatment of spent decontamination liquid in the decommission process and the concreted debris bearing hazardous organic coating materials. The decontamination factor of Cs and Co were 1.4×105, 1.4×105, respectively. The emisison of Pb was 0.562 ppm. These results suggested that tested PAM-MSO system treated low-level radioactive and pb-bearing mixed waste.
        59.
        2022.10 구독 인증기관·개인회원 무료
        Present study investigated the waste form integrity of melted products generated from PAM-MSO system, which is proposed and developed to compensate the drawbacks of each system. The disposal suitability of the melting solidification products generated from the plasma arc melting treatment of pulverized cement debris spiked by Pb, Cd and Cs, as indicators of typical hazardous metals and radionuclides existed in the low-level mixed waste in the KHNPPs. The final waste form obtained by the test was evaluated for suitability for disposal. The compressive strength was 261.10 MPa, showing much higher values when compared to other waste form products. The compressive strength of both the sample after irradiation with 107 Gy radiation and that after long-term submersion test (90 days) satisfied the disposal criteria. As a result of the leaching test conducted according to the ANS 16.1 test method, it was confirmed that the leaching index satisfies the disposal criteria.
        60.
        2022.10 구독 인증기관·개인회원 무료
        With the aging of nuclear power plants (NPPs) in 37 countries around the world, 207 out of 437 NPPs have been permanently shutdown as of August 2022 according to the IAEA. In Korea, the decommissioning of NPPs is emerging as a challenge due to the permanent shutdown of Kori Unit 1 and Wolsong Unit 1. However, there are no cases of decommissioning activities for Heavy Water Reactor (HWR) such as Wolsong Unit 1 although most of the decommissioning technologies for Light Water Reactor (LWR) such as Kori Unit 1 have been developed and there are cases of overseas decommissioning activities. This study shows the development of a decommissioning waste amount/cost/process linkage program for decommissioning Pressurized Heavy Water Reactor (PHWR), i.e. CANDU NPPs. The proposed program is an integrated management program that can derive optimal processes from an economic and safety perspective when decommissioning PHWR based on 3D modeling of the structures and digital mock-up system that links the characteristic data of PHWR, equipment and construction methods. This program can be used to simulate the nuclear decommissioning activities in a virtual space in three dimensions, and to evaluate the decommissioning operation characteristics, waste amount, cost, and exposure dose to worker. In order to verify the results, our methods for calculating optimal decommissioning quantity, which are closely related to radiological impact on workers and cost reduction during decommissioning, were compared with the methods of the foreign specialized institution (NAGRA). The optimal decommissioning quantity can be calculated by classifying the radioactivity level through MCNP modeling of waste, investigating domestic disposal containers, and selecting cutting sizes, so that costs can be reduced according to the final disposal waste reduction. As the target waste to be decommissioning for comparative study with NAGRA, the calandria in PHWR was modeled using MCNP. For packaging waste container, NAGRA selected three (P2A, P3, MOSAIK), and we selected two (P2A, P3) and compared them. It is intended to develop an integrated management program to derive the optimal process for decommissioning PHWR by linking the optimal decommissioning quantity calculation methodology with the detailed studies on exposure dose to worker, decommissioning order, difficulty of work, and cost evaluation. As a result, it is considered that it can be used not only for PHWR but also for other types of NPPs decommissioning in the future to derive optimal results such as worker safety and cost reduction.
        1 2 3 4 5