검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 984

        61.
        2023.05 구독 인증기관·개인회원 무료
        Recently, the spent fuel pools withdrawn from nuclear power plants in Korea have been saturated. Therefore, specific regulations on the management of spent fuel pools, such as transportation and intermediate storage are needed. The burnup history is directly related to the management of spent nuclear fuel. This is because the decision to handle nuclear fuel may vary depending on the initial concentration of nuclear fuel, the degree to which nuclear fuel is irradiated and radioisotope nuclides are decayed, and the cooling state in the spent nuclear fuel storage tank. The purpose of this study is to determine the burnup of fuel based on the value obtained by scanning the surface of spent nuclear fuel through a neutron detector. Conversely, a database of neutron signals that scan bundles of spent nuclear fuel with an instrument with an already identified combustion history needs to be completed. First of all, the correlation between burnup history and nuclides was identified in previous studies. By setting the burnup history as the input value in the ORIGEN-ARP code, it was possible to identify the radioactive isotopes remaining in the bundle of nuclear fuel. Neutrons can finally be measured based on the amount of nuclide inventory that constitutes spent nuclear fuel. Through MCNP, the neutron detector was simulated and signals were measured to confirm how it correlates with the previously acquired burnup history database. In addition, the M (sub-critical multiplication) value, which is essential for neutron measurement, was checked to confirm the degree to which additional neutrons were generated in spent nuclear fuel in a subcritical state. The target nuclear fuel assembly was CE16×16, WH14×14, and WH17×17, which confirmed the correlation (1) between burnup, enrichment, and cooling time with the previous research topic, TNSI (Total neutron source intensity). 􀜤􀜷􁈺􀜩􀜹􀝀/􀜯􀜶􀜷􁈻 = 0.83􁈺􀜵􀯇􁈻􀬴.􀬶􀬷􀬼 ∙ 􁈺􀜫􀜧􁈻􀬴.􀬸􀬺􀬶􀬻 ∙ 􀝁􀬴.􀬴􀬴􀬼􀬷∙􀯧 􁈺1􁈻 A neutron signal will be obtained from the case according to each burnup history constituting this database. In particular, PAR=SF, a function that calculates the production amount of the fission product, was used. To confirm the computational logic of SF, it was confirmed whether a reasonable calculation was made by calculating with a nuclide spectrum.
        79.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Understanding molting process in subterranean termites is a critical step to implement successful control program as chitin synthesis inhibitor baits interfere molting process of termites. In the present study, we report detailed molting process in Reticulitermes speratus kyushuensis Morimoto, 1968 that foraging workers start fasting period 5 days after they were collected and finished their entire molting process for the next 5 to 6 days. Ecdysis took less than an hour, specifically 9.2 ± 4.9 minutes from jack-knife posture to separation of the antenna and 36.6 ± 8.5 minutes from separation of the antenna to regain mobility. We believed relatively short time window of molting process in R. speratus kyushuensis may affect lengthy colony elimination time.
        4,000원
        80.
        2022.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The decommissioning of nuclear facilities produces various types of radiologically contaminated waste. In addition, dismantlement activities, including cutting, packing, and clean-up at the facility site, result in secondary radioactive waste such as filters, resin, plastic, and clothing. Determining of the radionuclide content of this waste is an important step for the determination of a suitable management strategy including classification and disposal. In this work, we radiochemically characterized the radionuclide activities of filters used during the decommissioning of Korea Research Reactors (KRRs) 1 and 2. The results indicate that the filter samples contained mainly 3H (500–3,600 Bq·g−1), 14C (7.5–29 Bq·g−1), 55Fe (1.1– 7.1 Bq·g−1), 59Ni (0.60–1.0 Bq·g−1), 60Co (0.74–70 Bq·g−1), 63Ni (0.60–94 Bq·g−1), 90Sr (0.25–5.0 Bq·g−1), 137Cs (0.64–8.7 Bq·g−1), and 152Eu (0.19–2.9) Bq·g−1. In addition, the gross alpha radioactivity of the samples was measured to be between 0.32–1.1 Bq·g−1. The radionuclide concentrations were below the concentration limit stated in the low- and intermediatelevel waste acceptance criteria of the Nuclear Safety and Security Commission, and used for the disposal of the KRRs waste drums to a repository site.
        4,300원
        1 2 3 4 5