검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5,766

        115.
        2023.11 구독 인증기관·개인회원 무료
        This study presents a rapid and sequential radiochemical separation method for Pu and Am isotopes in radioactive waste samples from the nuclear power plant with anion exchange resin and TRU resin. After radionuclides were leached from the radioactive waste samples with concentrated HCl and HNO3, the sample was allowed to evaporate to dryness after filtering the leaching solution with 0.45 micron filter. The Pu isotopes were separated in HNO3 medium with anion exchange resin. For leaching solution passed through anion exchange column, the Am isotopes were separated with TRU resin. The purified Pu and Am isotopes were measured by alpha spectrometer, respectively, after micro-precipitation of neodymium. The sequential radiochemical separation of Pu and Am isotopes in radioactive waste samples using anion exchange resin and TRU resin was validated with ICP-MS system.
        116.
        2023.11 구독 인증기관·개인회원 무료
        Heavy water (deuterium oxide, D2O) is water in which hydrogen atoms (1H, H), one of the constituent elements of water molecules, have been replaced with deuterium (2H, D), a heavier isotope. Heavy water is used in a variety of industries, including semiconductors, nuclear magnetic resonance, infrared spectroscopy, neutron deceleration, neutrino detection, metabolic rate studies, neutron capture therapy, and the production of radioactive materials such as plutonium and tritium. In particular, heavy water is used as a neutron moderator or coolant in nuclear reactors and as a fuel for nuclear fusion energy, methods for measuring heavy water are becoming increasingly important. There are methods with density, mass spectrometry, and infrared (IR) spectroscopy. In this study, Fourier transform infrared spectroscopy (FT-IR) was used, which is commonly used in IR spectroscopy because of its relatively high analytical sensitivity, low operating costs, and easy online analysis. Heavy water was identified in the range of 2,300-2,600 cm-1 wavenumber (O-D) and the range of 1,200-1,300 cm-1 wavenumber (D-O-D), which are known to be the range with strong infrared absorption. As a result, the linearity of infrared absorbance for each heavy water concentration was confirmed within the relative expansion uncertainty (k=2).
        117.
        2023.11 구독 인증기관·개인회원 무료
        In this study, we introduce the validation of the analysis guidelines through preliminary experiments of the draft analysis guidelines before analyzing waste materials (non-combustible). This validation data was applied the accuracy and efficiency of the separation and analysis for the waste such as steel generated from NPP. Steel (non-flammable) was leached the mixed acid and the leaching solution was separated by using the separation guidelines. Steel was corroded with radioactive RM (Co-60, Cs-137) and mixed acid. After drying, the corroded steel was measured the initial radioactivity by a HPGe detector (10,000 seconds). The sample was inserted in a beaker and leached with mixed acid (10 M HNO3 + 4 M HCl) for 2 hours. In this solution, it added 2 ml of H2O2 to increase the leaching effect. The ultrasonic device was adjusted so that the temperature does not exceed 60°C. After elution, the surface of the sample was washed with pure water. The weight of the sample was measured accurately, and recorded the weight loss rate after infiltration. The leaching sample was measured radioactivity by a HPGe detector (10,000 seconds). It was calculated the recovery rate based on the difference in total radioactivity before and after leaching. Before the test, radioactive RM (Co-60, Cs-137) was radioactive deposited by corrosion, but Cs- 137 was not detected in the initial gamma measurement and only Co-60 nuclides were deposited. The recovery rate test results were confirmed to be about 100%.
        118.
        2023.11 구독 인증기관·개인회원 무료
        Currently, non-volatile nuclides such as 94Nb, 99Tc, 90Sr, 55Fe, and 59/63Ni are used a sequential separation. In this study, we developed a separation for 99Tc and 90Sr by a carbonate precipitation. Sodium Carbonate (Na2CO3) was inserted in the aqueous sample from a Dry Active Waste (DAW) and a carbonate precipitation was produced. The precipitate is composed of di- or tri-valent element such as Co, Sr, Fe, Ni and the supernatant is composed of mono-valent element (Cs) and anion materials (ReO4 -, TcO4 -). In DAW, it was confirmed that the recovery of 90Sr (precipitate) and 99Tc (supernatant) were > 90%, respectively. The precipitate and supernatant separated by using a Sr-resin and an anion-exchange resin, respectively. The separated samples were measured by a Liquide Scintillation Counter (LSC, 90Sr) and Induced-Coupled Plasma-Mass Spectroscopy (ICPMS, 99Tc).
        119.
        2023.11 구독 인증기관·개인회원 무료
        Bis (2-ethylhexyl)phosphoric acid (HDEHP) is a renowned extractant, favored for its affinity to selectively remove uranium via its P=O groups. We previously synthesized HDEHP-functionalized mesoporous silica microspheres for solid-phase uranium adsorption. Herein, we investigated the kinetic and isothermal behavior of uranyl ion adsorption in mesoporous silica microspheres functionalized with phosphate groups. Adsorption experiments were conducted by equilibrating 20 mg of silica samples with 50 mL of uranium solutions, with concentrations ranging from 10 to 100 mgU L−1 for isotherms and 100 mgU L−1 for kinetics. Three distinct samples were prepared with varying HDEHP to TEOS molar ratios (x = 0.16 and 0.24) and underwent hydrothermal treatment at different temperatures, resulting in distinct textural properties. Contact times spanned from 1 to 120 hours. For x = 0.16 samples, it took around 50 and 11 hours to reach equilibrium for the hydrothermally treated samples at 343 K and 373 K, respectively. Adsorbed quantities were similar (99 and 101 mg g-1, respectively), indicating consistent functional group content. This suggests that the key factor influencing uranium adsorption kinetics is pore size of the silica. The sample treated at 373 K, with a larger pore size (22.7 nm) compared to 343 K (11.5 nm), experienced less steric hindrance, allowing uranium species to diffuse more easily through the mesopores. The data confirmed the excellent fit of pseudo-second-order kinetic model (R2 > 0.999) and closely matched the experimental value, suggesting that chemisorption governs the rate-controlling step. To gain further insights into uranium adsorption behavior, we conducted an adsorption isotherm analysis at various initial concentrations under a constant pH of 4. Both the Langmuir and Freundlich isotherm models were applied, with the Langmuir model providing a superior fit. The relatively high R2 value indicated its effectiveness in describing the adsorption process, suggesting homogenous sorbate adsorption on an energetically uniform adsorbent surface via a monolayer adsorption and constant adsorption site density, without any interaction between adsorbates on adjacent sites. Remarkably, differences in surface area did not significantly impact uranium removal efficiency. This observation strongly suggests that the adsorption capacity is primarily governed by the loading amount of HDEHP and the inner-sphere complexation with the phosphoryl group (O=P). Our silica composite exhibited an impressive adsorption capacity of 133 mg g-1, surpassing the results reported in the majority of other silica literature.
        120.
        2023.11 구독 인증기관·개인회원 무료
        Radiation from spent nuclear fuel (SNF) is one of key factors affecting the dissolution process of SNF and the source term from repository. The dissolution rate of uranium dioxide (UO2) matrix of SNF is expected to control the release of radionuclides from SNF in contact with water under geological disposal conditions. Based on the oxidative dissolution mechanism, the solubility of UO2 can increase significantly if the reducing environment near the fuel surface is altered by water radiolysis caused by radiation from SNF. Therefore, the analysis of water radiolysis products such as radicals (·OH, ·OH2, eaq, ·H) and molecules (H3O+, H2, H2O2) is perquisite for studies on the rate of such dissolution process to determine oxidation/dissolution mechanism and related rate constants. In this study we examined the two-known spectroscopic methods developed for H2O2 determination; one is the luminol-based chemiluminescence (luminol-CL) method and the other is the spectrophotometry using ferrous oxidation-xylenol orange complexation (FOX). Their applicability for quantitative analysis of H2O2 in potential aqueous samples from SNF dissolution studies was evaluated in terms of the analytical dynamic range (ADR), the limit of detection (LOD) and the interfering effects of various metal ions possibly present in real samples. The luminol-CL method exploits the chemiluminescence reaction caused by luminol; when in the presence of a metallic catalyst (e.g., Cu2+, Co2+), luminol emits a blue light (425 nm) at pH 10- 11 in response to oxidizing agents such as hydrogen peroxide. Although a flow-through reaction system is routinely employed to enhance the analytical sensitivity we achieved the ADR up to ~200 μM and LOD < 1 μM by a batch-wise CL detection using conventional cuvette cells and an intensified charge-coupled device (ICCD). Interestingly, it turned out that the interfering effects of other metal ions (e.g., UO2 2+, U4+, Fe2+ and Fe3+) is minimal, which should be advantageous for the luminol-CL method to be employed for samples potentially containing other metal ions. On the other hand, the FOX method spectrophotometrically analyzes H2O2 based on the difference in color (or absorption spectra) of Fe-xylenol orange (XO) complexes. Initially, the Fe2+-XO complex was provided in working solutions at pH 3, which was subsequently mixed with samples having H2O2 and allowed for quantitative oxidation of Fe2+ to Fe3+. Typically, by monitoring the absorbance of Fe3+-XO complex at 560-580 nm (λmax) the ADR up to ~100 μM and LOD ~1.6 μM were achieved. However, it is found that interfering effects from M3+ and M4+ ions are significant; these interfering metal ions can form XO complexes so as to directly contribute the measured absorbance. In contrast, the influence from M2+ ions was found to be negligible. To summarize we conclude that both methods can be applied for H2O2 determination for aqueous samples taken from SNF dissolution tests. However, prior to applying the FOX method the metal ion composition in those samples should be thoroughly identified not to overestimate the H2O2 concentration of samples. More details of underlying chemical reactions in both methods will be discussed in the presentation.