Although membrane bio-reactor (MBR) has been widely applied for wastewater treatment plants, the membrane fouling problems are still considered as an obstacle to overcome. Thus, many studies and commercial developments on mitigating membrane fouling in MBR have been carried out. Recently, high voltage impulse (HVI) has gained attention for a possible alternative technique for desalting, non-thermal sterilization, bromate-free disinfection and mitigation of membrane fouling. In this study, it was verified if the HVI could be used for mitigation of membrane fouling, particularly the internal pore fouling in MBR. The HVI was applied to the fouled membrane under different conditions of electric fields (E) and contact time (t) of HVI in order to investigate how much of internal pore fouling was reduced. The internal pore fouling resistance (Rf) after HVI induction was reduced as both E and t increased. For example, Rf decreased by 19% when the applied E was 5 kV/cm and t was 80 min. However, the Rf decreased by 71% as the E increased to 15 kV/cm under the same contact time. The correlation between E and t that needed for 20% of Rf reduction was modeled based on kinetics. The model equation, E1.54t = 1.2 × 103 was obtained by the membrane filtration data that were obtained with and without HVI induction. The equation states the products of En and t is always constant, which means that the required contact time can be reduced in accordance with the increase of E.
Electro-coagulation process has been gained an attention recently because it could overcome the membrane fouling problems in MBR(Membrane bio-reactor). Effect of the key operational parameters in electro-coagulation, current density(ρ i) and contact time(t) on membrane fouling reduction was investigated in this study. A kinetic model for ρi and t required to reduce the membrane fouling was suggested under different MLSS(mixed liquor suspended solids) concentration. Total 48 batch type experiments of electro-coagulations under different sets of current densities(2.5, 6, 12 and 24 A/m2), contact times(0, 2, 6 and 12 hr) and MLSS concentration(4500, 6500 and 8500mg/L) were carried out. After each electro-coagulation under different conditions, a series of membrane filtration was performed to get information on how much of membrane fouling was reduced. The membrane fouling decreased as the ρi and t increased but as MLSS decreased. Total fouling resistances, Rt (=Rc+Rf) were calculated and compared to those of the controls (Ro), which were obtained from the experiments without electro-coagulation. A kinetic approach for the fouling reduction rate (Rt/Ro) was carried out and three equations under different MLSS concentration were suggested: i) pi0.39t = 3.5 (MLSS=4500 mg/L), ii) pi0.46t = 7.0 (MLSS=6500 mg/L), iii) pi0.74t = 10.5 (MLSS=8500 mg/L). These equations state that the product of ρi and t needed to reduce the fouling in certain amounts (in this study, 10% of fouling reduction) is always constant.
색소변이체에서 버섯 바이러스의 게놈인 dsRNA가 확인 되었으며, 크기는 각각 5.8kb, 1.8kb 이었다. 느타리바이러스 진단용 프라이머인 PVP로 RT-PCR을 수행한 결과 500bp 크기의 특이밴드가 관찰되었다. 또한 양송이 바이러스 진단용 프라이머 LIVP와 MBVP에서도 특이밴드가 관찰되었으나 양송이 바이러스와는 다른 양상이었다. 원형느타리의 백색변이체 (MGL2205)에 존재하는 바이러스유사입자는 구형이었으며, 크기는 14, 20∼45nm이었다. 균사체의 세포단면을 관찰한 결과 바이러스 순화액에서 확인된 바이러스유사입자와 비슷한 구형의 입자들이 관찰되었으며, 순화된 바이러스와 동일한 입자인지는 추후 확인되어야 할 것으로 사료된다. 원형느타리 백색변이체(MGL2205)에 존재하는 바이러스의 최적 증식 조건은 15℃, pH 6, 배양기간 3주인 것으로 판단되며, 이 결과는 이와 유사한 재배적 조건에서 재확인되어야 할 것으로 사료된다.
Bacillus amyloliquefaciens GR4-5 was isolated from the rhizosphere soil of Korean ginseng and displayed broad-spectrum suppression of ginseng root rot pathogens. The survivability of B. amyloliquefaciens GR4-5 in soil was investigated under three different conditions; indoor, outdoor ─ of which soil was put in 14 mL tube after treatment ─ and field environments. Soil samples were collected over a fourweek period from three experimental designs, and assessed for 16S rRNA gene copy number by quantitative polymerase chain reaction (qPCR). In outdoor condition, the 16S rRNA gene copy number of Bacillus spp. was 8.35 log copies g soil-1 immediately after the GR4-5 treatment. Two weeks later, the 16S rRNA gene copy number of Bacillus spp. (6.70 log copies g soil-1) was similar to that of the control (6.38 log copies g soil-1). In indoor condition, the 16S rRNA gene copy number of Bacillus spp. maintained in a certain level for a longer period than those in outdoor and field. The 16S rRNA gene copy number of Bacillus spp. in field experiment was reduced faster than that of outdoor condition. Our results show that B. amyloliquefaciens GR4-5 can survive in bulk soil for 1 week, indicating its potential use as a biocontrol agent following 7 day application intervals. This study presents that outdoor microcosm system design could be a useful method to assess easily the survivability of beneficial microorganisms.
본 연구에서는 다음과 같은 세 가지 측면에서 광역상수도 요금제도 개선 방향을 분석하였다. 첫째, 지금까지 기존 연구에서는 거의 논의가 없었던 용도별(생활용수, 공업용수) 차등요금을 부과하는 방안을 분석하였다. 먼저 현행 용도별 동일 요금체계의 문제점을 지적하고 용도별 차등화 요금 설정을 위한 몇 가지 방법론을 제시하였으며, 다소 제약적인 가정에서지만 실증자료를 이용하여 람지(Ramsey) 가격을 계산해 보았다. 둘째, 첨두부하요금(계절별 차등 요금)과