Alcoholic steatosis is a fundamental metabolic disorder and may precede the onset of more severe forms of alcoholic liver disease. In this study, we isolated enzymatichydrolysate from Semisulcospira libertine by alcalase hydrolysis and investigated the protective effect of Semisulcospira libertine hydrolysate on liver injury induced by alcohol in the mouse model of chronic and binge ethanol feeding (NIAAA). In an in vitro study, the hydrolysate protects HepG2 cells from ethanol toxicity. Liver damage was assessed by histopathological examination, as well as by quantitating activities of serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP). After the administration of S. libertina hydrolysate, fat accumulation and infiltration of inflammatory cells in liver tissues were significantly decreased in the NIAAA mouse model. The elevated levels of serum AST, ALT, and ALP activities, along with the lipid contents of a damaged liver, were recovered in experimental mice administrated with S. libertina hydrolysate, suggesting its role in blood enzyme activation and lipid content restoration within damaged liver tissues. Moreover, treatment with S. libertine hydrolysate reduced the expression rate of cyclooxygenase (COX-2), interleukin (IL)-1β, and IL-6, which accelerate inflammation and induces tissue damage. All data showed that S. libertine hydrolysate has a preventive role against alcohol-induced liver damages by improving the activities of blood enzymes and modulating the expression of inflammation factor, suggesting S. libertine hydrolysate could be a commercially potential material for the restoration of hepatotoxicity.
Although Semisulcospira libertina is generally regarded as a supplement for the alleviation of alcohol hangover, little is known about its effects on cell metabolism. Therefore, this study was conducted to analyze the constituents of the extracts prepared using different extraction methods and to compare their biochemical properties. The amino acid contents were found to be much higher in acidic and enzymatic hydrolysates than hot water extracts from S. libertina. DPPH radical scavenging activities in acidic and enzymatic hydrolysates were higher than those of hot water extracts. Three types of S. libertina hydrolysate was added to HepG2 cells damaged by acetaminophen (AAP), after which the survival rate of HepG2 cell were measured. In addition, lactate dehydrogenase (LDH) activities in the culture media were evaluated. The survival rates of HepG2 cells were 77.0±4.3% and 81.5±1.3% at 3 h and 5h enzymatic hydrolysates, respectively. These cell survival rates were higher compared to those of the negative control group (67.8±4.3%) treated only with acetaminophen. Cellular toxicities induced by treatment with AAP were also significantly alleviated in response to treatment with the extracts of S. libertina. In addition, the activities of 2 key enzymes that metabolize ethanol, alcohol dehydrogenase and aldehyde dehydrogenase, were upregulated by 4.7- and 2.7-fold respectively in response to treatment with a 3 h enzymatic hydrolysate of S. libertina. Taken together, these results provide biochemical evidence of the method by which S. libertina exerts its biological functions, including the alleviation of alcohol hangover and the protection of liver cells against toxic insults.
Although Semisulcospira libertina is generally regarded as a supplement for the alleviation of alcohol hangover, little is known about its effects on cell metabolism. Therefore, this study was conducted to analyze the constituents of the extracts prepared using different extraction methods and to compare their biochemical properties. The amino acid contents were found to be much higher in acidic and enzymatic hydrolysates than hot water extracts from S. libertina. DPPH radical scavenging activities in acidic and enzymatic hydrolysates were higher than those of hot water extracts. Three types of S. libertina hydrolysate was added to HepG2 cells damaged by acetaminophen (AAP), after which the survival rate of HepG2 cell were measured. In addition, lactate dehydrogenase (LDH) activities in the culture media were evaluated. The survival rates of HepG2 cells were 77.0±4.3% and 81.5±1.3% at 3 h and 5h enzymatic hydrolysates, respectively. These cell survival rates were higher compared to those of the negative control group (67.8±4.3%) treated only with acetaminophen. Cellular toxicities induced by treatment with AAP were also significantly alleviated in response to treatment with the extracts of S. libertina. In addition, the activities of 2 key enzymes that metabolize ethanol, alcohol dehydrogenase and aldehyde dehydrogenase, were upregulated by 4.7- and 2.7-fold respectively in response to treatment with a 3 h enzymatic hydrolysate of S. libertina. Taken together, these results provide biochemical evidence of the method by which S. libertina exerts its biological functions, including the alleviation of alcohol hangover and the protection of liver cells against toxic insults.