기존 항만 건설 시 화물차 전용 주차장이 고려되지 않았으며, 해양수산부의 ‘제2차 신항만건설기본계획(2019~2040)’에 따라 총 11 개의 새로운 항만이 건설될 예정이다. 따라서 화물차 전용 주차장 설계에 대한 연구가 필요한 실정이다. 현재 항만에서는 화물차 전용 주차 공간 부족으로 불법 주차가 발생하고 있으며, 이로 인해 교통사고 위험이 증가하고 있다. 기존 연구에서는 전체 항만을 대상으로 한 분류 방법이 제안되었으나, 신설 항만 설계 시 과소 또는 과대 설계 문제를 초래한다. 따라서 본 연구는 부두별로 4대 요소(안벽 길이, 야적장 면적, 접안 능력, 하역 능력)를 기반으로 분류하며, DWT와 TEU 단위를 고려하여 데이터를 분석하였다. 14개 국가 관리 항만의 총 380 부두 데이터를 조사하고, 이를 통해 그룹핑 작업을 통해 정규화 곡선으로 평균 ± 표준편차를 기준으로 항만 전체 부두 에 대한 분류를 실시하였다. 이를 통해 향후 연구결과를 통해 검증 후 최종 분류방법을 결정하여 새로운 항만분류법을 제안하고, 제안 된 방법론의 분류검증을 실시할 예정이다.
본 연구의 목적은 요를 통해 hFSH를 발현하는 형질 전환 소의 생산이다. 요의 분비와 관련 있는 유전자로서 mUII promoter를 사용하여 hFSH유전자를 구성했다. 태아섬유아세포(KbFF)는 임신 45일령의 태아(male)에서 채취하였다. hFSH gene은 pcDNA3(neo) vector와 같이 KbFF 세포에 electroporation 방법으로 transfection하였다. 유전자를 transfection한 세포는 G-418로 2주 동안
본 연구는 활성화처리 방법 및 배양 조건이 돼지 단위발생란의 체외발달 및 apoptosis에 미치는 영향을 알아보기 위해 실시되었다. 도축장 유래 난소로부터 채취된 미성숙 난자를 42~44시간 동안 성숙배양한 후 사용하였다. Apoptosis는 TUNEL 방법을 사용하여 조사하였다. 실험 1에서는 성숙배양된 난자들을 electric pulse(1.2 kV/cm for 30μsec 2회, E), E + 6-dimethylaminopurine(6-DMAP) 또는 E + cycloheximide(CH) 방법으로 활성화 처리하여 PZM-3를 이용하여 5% CO2, 38.5℃에서 배양하였다. 실험 2에서는 전기자극을 이용하여 활성화처리된 난자들을 각각 PZM-3 또는 NCSU-23 배양액 내에서 배양하였다. 각 배양액 내의 난자들은 각각 20% O2 조건으로 나뉘어 배양하였다. E + 6-DMAP(36.5%) 또는 E + CH 구(32.5%)에서 E 구(27.7%)보다 유의적으로 높은 배반포 형성율을 보였다(P<0.05). 처리별 apoptosis 발생율은 각각 5.3%(E), 7.7%(6-DMAP) 및 7.1%(CH)였다. 실험 2에서는 PZM-3 구의 배반포 형성율이 NCSU-23 구에 비하여 산소분압조건과 관계없이 다소 높았다(28.2{sim}29.7% vs. 22.6~24.4%). PZM-3 및 20% O2 조건하에서 유의적으로 낮은 apoptosis 발생 비율을 나타냈다(9.2%, P<0.05). 그러므로 돼지 단위발생란을 chemical agent를 이용한 추가 활성화처리 후 PZM-3, 20% O2, 조건으로 배양하면 더 나은 배반포 발생율을 얻을 수 있다고 생각된다.
핵이식 방법을 이용하여 성공적인 복제를 이루기 위해서 인위적인 활성화 처리는 필수적인 요소이다. 본 연구는 전기자극에 의해 활성화된 난자를 chemical agent를 이용하여 추가적인 활성화 처리를 하였을 때 돼지 단위발생란의 발달에 미치는 영향을 알아보고자 수행되었다. 체외에서 40~44시간 동안 배양된 난자를 전기자극(E)으로 활성화 처리한 후 Thimerasol + Dithiothreitol(Thi+DTT), 6-Dimethylaminopurine(6-DMAP) 및 Cycloheximide(CH)를 사용하여 추가 활성화 처리를 하였다. 활성화 방법(E, E+Thi+DTT, E+6-DMAP 및 E+CH)에 따른 단위발생란의 배반포까지의 발달율을 조사한 결과, chemical agent에 의해 추가 활성화된 단위발생란이 전기자극만으로 처리된 구의 단위발생란보다 유의적으로 높은 발달율을 보였다(21.5~28.1% vs. 18.0%, P<0.05). 특히, E+Thi+DTT를 이용하였을 때 발달율이 유의적으로 높게 나타났다(28.1%, P<0.05). 활성화 처리별 전핵 형성율을 조사한 결과, chemical agent에 의해 추가 활성화 처리된 구에서 하나의 극체(1PN) 형성률은 처리별로 차이를 보이지 않았으나(59.9~64.7%), 2PN 형성율은 추가 활성화 처리구에서 전기자극만을 사용하였을 때보다 유의적으로 높게 나타났다(7.2~9.7% vs. 4.3%, P<0.05). 이상의 결과를 살펴볼 때, 전기자극 후 chemical agent를 이용한 추가 활성화는 단위발생란의 배반포까지의 발달능력을 증가시키는 것으로 생각된다.