검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 43

        21.
        2014.09 KCI 등재 서비스 종료(열람 제한)
        Haloacetic acids (HAAs) concentrations have been observed to decreased at drinking water distribution system extremities. This decrease is associated with microbiological degradation by pipe wall biofilm. The objective of this study was to evaluate HAAs degradation in a drinking water system in the presence of a biofilm and to identify the factors that influence this degradation. Degradation of monochloroacetic acid (MCAA), dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA) was observed in a simulated distribution system. The results obtained showed that different parameters came into play simultaneously in the degradation of HAAs, including retention time, water temperature, biomass, and composition of organic matter. Seasonal variations had a major effect on HAAs degradation and biomass quantity (ATP concentration) was lower by 25% in the winter compared with the summer.
        22.
        2014.06 KCI 등재 서비스 종료(열람 제한)
        In this study we followed biofilm formation and development in a granular activated carbon (GAC) filter on pilot-scale during the 12 months of operation. GAC particles and water samples were sampled from four different depths (-5, -25, -50 and –90 cm from surface of GAC bed) and attached biomass were measured with adenosine tri-phosphate (ATP) analysis and heterotrophic plate count (HPC) method. The attached biomass accumulated rapidly on the GAC particles of top layer throughout all levels in the filter during the 160 days (BV 23,000) of operation and maintained a steady-state afterward. During steady-state, biomass (ATP and HPC) concentrations of top layer in the BAC filer were 2.1 μg·ATP/g·GAC and 3.3×108 cells/g·GAC, and 85%, 83% and 99% of the influent total biodegradable dissolved organic carbon (BDOCtotal), BDOCslow and BDOCrapid were removed, respectively. During steady-state process, biomass (ATP and HPC) concentrations of middle layer (-50 cm) and bottom layer (-90 cm) in the BAC filter were increased consistently. Biofilm development (growth rate) proceed highest rate in the top layer of filter (μATP = 0.73 day-1; μHPC = 1,74 day-1) and 78%∼87% slower in the bottom layer (μATP = 0.14 day-1; μHPC = 0.34 day-1). This study shows that the combination of different analytical methods allows detailed quantification of the microbiological activity in drinking water biofilter.
        23.
        2013.11 서비스 종료(열람 제한)
        본 연구는 수자원의 효과적인 활용하기 위해 하수처리장 방류수를 이용하여 막분리 공정을 적용하고, 생산된 Eco-Water(하수처리수 재이용수)를 인근 산업체에 공급하기 위해 수질 및 수량특성 등 파악하여 공업용수로의 활용에 관한 타당성을 검토하였다. 실험에 사용된 재이용수는 B시 N사업소의 하수처리장 방류수를 대상으로 실시하였다. 대상 하수처리장 사업소의 경우 인근에 대규모 산업단지가 소재하고 있으며, 낙동강 하류에 위치하여 상대적으로 유입수질의 시간에 따른 변동이 심한 것으로 나타났다. 하수처리장 방류수를 이용한 Eco-Water 생산 공정은 BF(Birmfilter)-UF(Ultrafilter)-RO(Reverse osmosis) 공정으로 운전하였으며, UF는 H사의 PVDF 중공사막, RO는 N사 ESPA로 구성하여 Eco-Water Pilot plant를 제작하였다. 운전조건은 하수처리장 방류수 유입량 약 4.0 m₃/hr, 생산수량 3.0 m₃/hr 및 농축수량 1.0 m₃/hr로 기준으로 설계하였고, 처리공정으로는 공업폐수 중 중금속(철 및 망간) 유입이 많을 것으로 판단되어 전처리 공정에 BF를 설치하여 UF와 RO의 생산수질의 안정화 및 module별 유입부하량을 감소시켜 운전하였다. 운전에 앞서 공급대상 사업체의 요구수질을 조사하여 연구에 임하였으며, 운전결과 목표수질인 탁도 0.2 NTU 이하, 총 용존고형물 90.0 mg/L 이하, 경도 5.0 mg CaCo₃/L 이하, 전기전도도 150.0 μS/cm 이하, M-알칼리도 20.0 mg CaCo₃/L 이하, 염소이온 50.0 mg/L 이하, 실리카 2.0 mg/L 이하, 철 0.05 mg/L 이하 및 망간 0.05 mg/L 이하를 모두 만족 하였다. 또한, 동절기에도 수온은 15℃ 이상으로 일정하게 유입되어 유입수 온도감소에 따른 운전효율 감소는 거의 나타나지 않았으며, 하수처리장 방류수를 이용한 Eco-Water 공업용수 생산 및 공급이 가능할 것으로 판단된다.
        24.
        2011.10 KCI 등재 서비스 종료(열람 제한)
        The objectives of this study are to examine the processing of oils contamination soil by means of using a micronano-bubble soil washing system, to investigate the various factors such as washing periods, the amount of micro-nano bubbles generated depending on the quantity of acid injection and quantity of air injection, to examine the features involved in the elimination of total petroleum hydrocarbons (TPHs) contained in the soil, and thus to evaluate the possibility of practical application on the field for the economic feasibility. The oils contaminated soil used in this study was collected from the 0~15 cm surface layer of an automobile junkyard located in U City. The collected soil was air-dried for 24 hours, and then the large particles and other substances contained in the soil were eliminated and filtered through sieve No.10 (2 mm) to secure consistency in the samples. The TPH concentration of the contaminated soil was found to be 4,914~5,998 mg/kg. The micronano-bubble soil washing system consists of the reactor, the flow equalization tank, the micronano- bubble generator, the pump and the strainer, and was manufactured with stainless material for withstanding acidic phase. When the injected air flow rate was fixed at 2 L/min, for each hydrogen peroxide concentrations (5, 10, 15%) the removal percents for TPH within the contaminated soil with retention times of 30 minutes were respectively identified as 4,931 mg/kg (18.9%), 4,678 mg/kg (18.9%) and, 4,513 mg/kg (17.7%). And when the injected air flow rate was fixed at 2 L/min, for each hydrogen peroxide concentrations (5, 10, 15%) the removal percents for TPH within the contaminated soil with retention times of 120 minutes were respectively identified as4,256 mg/kg (22.3%), 4,621 mg/kg (19.7%) and 4,268 mg/kg (25.9%).
        30.
        2011.06 KCI 등재 서비스 종료(열람 제한)
        The objectives of this research are to investigate the proper coagulation conditions which are a type and doses of coagulants, mixing conditions (velocity gradients and mixing times), pH and so on through Jar-test, to evaluate the flux variations, permeate, backwashing according to characteristics of pretreatment of the wastewater by means of MF membranes for river maintenance water reuse. The effluent water from B-city K-sewage treatment plant are used for this research. Turbidity and suspended solids(SS) are 14.2 NTU and 10.4 mg/L respectively. This condition causes fouling for membrane process. The flux decline could be reduced when coagulation pretreatment was carried out. Optimal coagulations PAC which are commonly used in the sewage treatment plant was observed in this research. The results indicate that an optimal coagulation dose and pH are 80 ppm and pH of 7 respectively, but coagulation efficiency was lower at strong acid or strong base. Results showed that continuous and steady operations in membrane separation process by means of the effective removal of organic matter and turbidity with coagulation pretreatment of sewage secondary effluent were achieved.
        37.
        2009.03 KCI 등재 서비스 종료(열람 제한)
        The blue-green algae which caused odor problem in the tap water are difficult to precipitate in sedimentation basin and clogged the filter void rapidly. The studies of this paper were not only oxidation, coagulation and sedimentation processes for effectively removing blue-green algae but yellow clay and polyamine for verification as coagulants aids. The results of this research are summarized as follows: Higher ozone dose(C) and longer contact time(T) were needed for a high degree of removing blue-green algae efficiency. the removal rate of blue-green algae was proportional to the C×T value. The removal percent of chlorophyll-a by sedimentation and filter without pre-ozonation was about 75% but 1 mg/L pre-ozonation could increase the removal percent of chlorophyll-a to 99% and more pre-ozonation could remove completely. Though the removal efficiency of turbidity could increased by high dose of chlorination, the dissolved organic carbon was increased. More chlorine dose from 4 to 10 mg/L dissolved organic carbon was decreased. Using yellow clay as coagulant aids increased density of floc so the settling velocity of floc become rising but polyamine could not increase settling velocity of floc though it could formated large floc.
        38.
        2008.11 KCI 등재 서비스 종료(열람 제한)
        Aerated submerged bio-film (ASBF) pilot plant has been developed. The presented studies optimized an inexpensive method of enhanced wastewater treatment. The objectives of this research were to describe pilot scale experiments for efficient removal of dissolved organic and nitrogen compounds by using ASBF reactor in plug-flow reactor (PFR) and improve understanding of dissolved organic matter and nitrogen compounds removal rates with dynamic relationships between heterotrophs and autotrophs in the fixed-film reactor. This research explores the possibility of enhancing the performance of shallow wastewater treatment lagoons through the addition of specially designed structures. This direct gas-phase contact should increase the oxygen transfer rate into the bio-film, as well as increase the micro-climate mixing of water, nutrients, and waste products into and out of the bio-film. This research also investigated the efficiency of dissolved organic matter and ammonia nitrogen removals in the ASBF. As it was anticipated, nitrification activity was highest during periods when the flow rate was lower, but it seemed to decline during times when the flow rate was highest. And ammonia nitrogen removal rates were more sensitive than dissolved organic matter removal rates when flow rates exceeded 2.2 L/min.
        1 2 3