The objective of this study was to assess the effects of gypsum application on dry matter yield (DMY), mineral content of alfalfa (Medicago sativa L.), and soil properties in reclaimed tidal land in South Korea. The experiment was conducted in Seokmun, located on the west coast of South Korea, which is reclaimed with approximately 70 cm depth of degraded island soil. Treatments consisted of a control with no gypsum application (G0), 2 ton ha-1 (G2), and 4 ton ha-1 (G4) of gypsum application. The first harvest was carried out when the alfalfa reached 10% flowering, and subsequent harvests were conducted at 35-day intervals. Over the three-year experimental periods (2019-2021), the total DMY of G2 treatment was significantly higher than those of G0 and G4 (p<0.05). Although both G2 and G4 gypsum application treatments lowered soil pH, the G4 treatment increased the electrical conductivity (EC) content of the soil. Additionally, gypsum application affected the mineral contents of alfalfa, resulting in reduced concentration of sodium (Na) and Magnesium (Mg). Therefore, this present study suggests that a gypsum application rate of 2 ton ha-1 is optimal for improving alfalfa dry matter yield and mineral balance, as well as enhancing soil chemical properties in reclaimed tidal land in South Korea.
Background: Dairy cows exposed to heat stress have reduced milk production, milk quality, and conception rates, leading to lower profits. This study was conducted to analyze the effect of heat stress according to Temperature-Humidity Index (THI) on the milk production of Korean Holstein cows. Methods: Monthly maximum temperature and average relative humidity data from January 2017 to August 2024 were obtained from 62 observation points used by the Korea Meteorological Administration to calculate the national average. Using this data, the THI, a key indicator for assessing heat stress in Korean Holstein cows, was calculated. Additionally, data from 240,088 Korean Holstein cows, collected through tests conducted by the Dairy Cattle Improvement Center of the NH-Agri Business Group, were analyzed. Results: Comparative analysis of the relationship between THI and milk production revealed that milk yield remained relatively stable until THI reached the “very severe” heat stress threshold (THI ≥ 79). Beyond this level, milk production showed a tendency to decline. Conversely, when THI dropped below this threshold, milk yield tended to recover. Notably, the temperature in September, typically considered part of the autumn season, has been rising in recent years, with THI values now approaching the very severe stress level (THI ≥ 79). Conclusions: These findings suggest that establishing an appropriate farm environment and implementing systematic THI management are essential for mitigating the decline in milk production, as well as the associated economic losses, caused by rising domestic temperatures due to global warming.
본 연구는 우리나라에 자생하는 목본 관상용 식물인 먼나무 (Ilex rotunda)와 으름덩굴(Akebia quinata)을 대상으로 삽목 효율을 분석하였다. 삽수는 녹지와 숙지로 구분하고 생장조절 제 indole-3-butyric acid (IBA)와 시판용 발근촉진제 루톤 (Rootone)을 처리하여 대조군과 비교하였다. 그 결과, 발근율 (녹지, 숙지)은 먼나무(50.9, 19.0%) 및 으름덩굴(52.8, 28.5%) 로 두 수종 모두 숙지보다는 녹지가 손쉽게 발근되었다. 생장조절 제의 발근 촉진 효과는 녹지보다는 숙지에서 두드러졌으며, 생장 조절제 효과는 두 수종에서 상이하게 나타났으며, IBA와 루톤에 대한 두 수종의 발근 반응이 다르게 나타냈다. IBA 1,000ppm 처리는 먼나무의 발근을 촉진시켰고(65.9%) 으름덩굴에서는 고 사에 따른 발근율 저하를 야기하였으며(5.0%), 오히려 으름덩굴 은 루톤 처리로 발근이 촉진되었다(83.3%).
Amitriptyline hydrochloride (AMT), a tricyclic antidepressant, is known to exhibit antimicrobial effects against a wide range of bacterial species. This study aims to evaluate the effect of AMT on Brucella (B.) abortus infection in RAW 264.7 cells and ICR mice, which has not yet been clearly characterized. The results showed that all tested concentrations of AMT had no direct bactericidal effect on B. abortus survival at any incubation time point. Interestingly, RAW 264.7 cells pre-treated with a non-toxic high concentration of AMT before B. abortus infection showed a significant reduction in the phagocytosis of B. abortus at 20 min post-infection, compared to untreated cells. However, AMT treatment did not affect the intracellular replication of B. abortus compared to the control cells. Based on the reduced bacterial uptake observed in-vitro, an in-vivo experiment was conducted to assess whether daily oral administration of AMT at a dose of 20 mg/kg could inhibit B. abortus growth in ICR mice. The results showed that AMT treatment slightly increased both organ weights and bacterial loads, suggesting possible systemic effects of prolonged AMT exposure. In summary, these preliminary results provide initial insight into the potential effects of AMT on B. abortus infection both in-vitro and in-vivo. Therefore, further study should focus on dose optimization in-vivo and exploration of the underlying cellular mechanisms involved in AMT-mediated inhibition of phagocytosis during Brucella infection.
Human dermal fibroblasts (HDFs) play a critical role in maintaining skin integrity and promoting tissue repair, but are highly susceptible to apoptosis under stress conditions such as nutrient deprivation. Adipose-derived stem cells (ADSCs) have emerged as a promising therapeutic option due to their regenerative potential and ability to secrete bioactive factors. In this study, we investigated the effect of ADSC-derived paracrine signaling on apoptosis in HDFs and explored the underlying molecular mechanisms. Using a Transwell co-culture system, we found that ADSCs significantly reduced apoptosis in HDFs subjected to low-serum stress, as confirmed by APOPercentage™ staining and the expression of apoptosis-related proteins. Among several soluble factors secreted by ADSCs, hepatocyte growth factor (HGF) exhibited the most pronounced time-dependent increase in culture supernatants. The anti- apoptotic effect of ADSCs was abolished by neutralizing antibodies against HGF, indicating a key role of this factor in mediating fibroblast survival. Further, HDFs were found to express the HGF receptor c-Met at both the mRNA and protein levels. Inhibition of c-Met signaling reversed the cytoprotective effect of ADSCs, suggesting that HGF functions through this receptor. Mechanistically, only the PI3K/AKT pathway—among the major survival pathways tested—was selectively activated in HDFs by ADSC co-culture. Pharmacological inhibition of PI3K/AKT signaling using LY294002 abolished the protective effect, while inhibition of ERK or p38 MAPK had no significant impact. These findings demonstrate that ADSC-derived HGF protects HDFs from stress-induced apoptosis primarily through activation of the c-Met–PI3K/ AKT pathway. This mechanistic insight may provide a basis for the development of stem cell– based therapies aimed at enhancing skin regeneration and fibroblast viability in degenerative or wound-healing contexts.
Virtual Reality Head Mounted Display (VR HMD)-based flight simulators have recently emerged as promising tools for enhancing pilot training effectiveness. This study aims to establish a set of evaluation criteria for the development of VR HMD-based flight simulators and to determine their relative importance and priority using the Analytic Hierarchy Process (AHP). Through an extensive review of the literature, a hierarchical evaluation model was constructed, consisting of three primary criteria and ten sub-criteria. A structured questionnaire was administered to experienced pilots, and the collected data were analyzed using the AHP methodology to assess the relative weights of each criterion. The analysis revealed that the fidelity of system performance is the most influential factor in evaluating VR HMD-based flight simulators. These findings present a structured evaluation framework and offer practical insights for guiding the strategic development and optimization of VR HMD-based flight training systems.
In this study, proteins were extracted from sesame and perilla meals (agricultural by-products) by using hot-water defatting and acid precipitation, and their functional properties were compared with those of a commercial soy protein isolate (SPI). According to the SDS-PAGE results, the sesame meal protein extract (SMPE) exhibited a higher content of hydrophobic amino acids than the perilla meal protein extract (PMPE), alongside a relatively lower intensity of the 7S globulin band. SMPE showed 1.41-fold higher solubility than SPI at pH 10 and 1.72- and 1.66-fold higher emulsifying activity indices (EAIs) at pH 8 and 10, respectively. PMPE exhibited similar trends in solubility and EAI as SPI at the corresponding pH values. However, the emulsifying stability indices of SMPE and PMPE were lower than that of SPI. In particular, the fat absorption capacity of SMPE was significantly higher than those of SPI and PMPE, likely because of its higher content of hydrophobic or nonpolar amino acid residues. These results suggest that SMPE and PMPE are promising alternative protein sources for food applications and may promote value-added utilization of plant-derived by-products in the food industry.
In this study, conjugates were prepared via dry heat-induced glycosylation with maltodextrin (MD) to enhance the functional properties of sesame meal protein extract (SMPE). With the progress of conjugation, the specific protein bands of SMPE decreased and new bands appeared in the higher molecular weight range (approximately 170 kDa). The FT-IR spectra confirmed the structural modifications resulting from Maillard reaction-driven covalent bonding between SMPE and MD. The solubility and emulsifying properties—emulsifying activity index (EAI) and emulsifying stability index (ESI)—of the conjugates showed little variation with dry-heat treatment time, but they were significantly influenced by the dextrose equivalent (DE) of MD. Solubility was highest when SMPE was conjugated with MD of DE 4–7 at both 12 h (19.38%) and 24 h (20.54%) and decreased as DE increased. Notably, the three-way ANOVA results showed that the emulsifying properties improved significantly with higher DE of MD. The EAI and ESI of SMPE conjugated with MD of DE 16.5–19.5 increased by 1.52- and 1.41-fold, respectively, when compared with the control SMPE. These findings suggest that the SMPE-MD conjugates have promising potential for applications in food systems that require enhanced emulsifying properties.
Recent global efforts to combat climate change have accelerated, with nations adopting carbon strategies such as carbon taxes and emission trading system (ETS) to support their net-zero commitments. These initiatives enable governments to enforce mitigation while maintaining their dual goal of fostering economic growth. Vietnam, a developing country, has emerged as a proactive participant by launching a national ETS, drawing from international best practices and domestic geographical advantages. This article examines the process and challenges involved in designing and implementing an ETS in Vietnam, exploring the necessary policy frameworks, institutional structures, and market mechanisms. It highlights key considerations such as the selection of sectors and entities to be covered, the allocation of emission allowances, and the establishment of new market management solutions. This article concludes with strategic recommendations to support the development of a successful and sustainable ETS mechanism in developing country like Vietnam.
본 연구는 습도센서에서 Zn-MOF (금속-유기구조)의 개발과 응용에 대해 다루며, 친환경적 합성과 우수한 전기적 특성을 보고한다. 그린 화학의 원리를 이용하여 제작된 Zn-MOF를 유연한 폴리에 틸렌테레프탈레이트 기판 상에 형성된 깍지낀 구조의 전극과 통합하였다. 상대습도가 10%부터 90%까지 증가할 때, 전기적 특성은 42.49 pF에서 370 nF까지 정전용량의 급격한 상승(약 939,322%)을 나타냈다. 또한, 임피던스는 47 MΩ에서 0.072 MΩ까지 약 99.81% 감소하였다. 제작된 습도센서는 반응시간 5초, 복구시간 약 0.7에서 0.9초로 동적으로 반응하였다. 이러한 결과는 Zn-MOF가 고도로 민감하고 반응성이 뛰어난 습도 모니터링할 수 있는 가능성과, 특히 다양한 환경 조건에서 센서의 정전용량성 반응성을 강조 하고자 한다.
Metal additive manufacturing (AM) facilitates the production of complex geometries with enhanced functionality. Among various AM techniques, laser powder bed fusion (LPBF) is distinguished by its precision and exceptional mechanical properties achieved via laser fusion deposition. Recent advancements in AM have focused on combining LPBF with post-processing methods such as cold rolling, high-pressure torsion, and forming processes. Therefore, understanding the forming behavior of LPBF-processed materials is essential for industrial adoption. This study investigates the stretch-flangeability of LPBF-fabricated 316L stainless steel, emphasizing its anisotropic microstructure and mechanical properties. Hole expansion tests were employed to assess stretch-flangeability in comparison to wrought 316L stainless steel. The results demonstrate that LPBF-processed samples exhibit significant anisotropic behavior, demonstrating the influence of microstructural evolution on formability. These findings contribute valuable insights into optimizing LPBF materials for industrial forming applications.